Pacific Journal of Mathematics

Hermite character sums.

Ronald J. Evans

Article information

Pacific J. Math., Volume 122, Number 2 (1986), 357-390.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11T21
Secondary: 11L10: Jacobsthal and Brewer sums; other complete character sums


Evans, Ronald J. Hermite character sums. Pacific J. Math. 122 (1986), no. 2, 357--390.

Export citation


  • [1] R.Askey andJ. Wimp, Associated Laguerre and Hermite polynomials, Proc. Royal Soc. Edinburgh,96A (1984), 15-37.
  • [2] R.Askey, T.Koornwinder,andM.Rahman, An integral ofproducts of ultraspherical functions anda q-extension, to appear.
  • [3] B. Berndt and R. Evans, Sums of Gauss, Eisenstein, Jacobi, Jacobsthal, and Brewer, Illinois J. Math., 23 (1979), 374-437.
  • [4] G. Birkhoff and S. MacLane, A Survey of Modern Algebra, 3rd edition, Macmillan, N. Y., 1965.
  • [5] H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fallen, J. reine angew. Math., 172 (1934),151-182.
  • [6] A. Erdelyi, Higher TranscendentalFunctions, vol. 2, McGraw Hill, N.Y., 1953.
  • [7] R. Evans, Identities for products of Gauss sums overfinite fields, Enseignement Math., 27 (1981),197-209.
  • [8] R. Evans, Character sum analogues of constant term identities for root systems, Israel J. Math., 46 (1983),189-196.
  • [9] R. Evans, J. Pulham, and J. Sheehan, On the number of complete subgraphs contained in certain graphs, J. Combinatorial Theory, Series B,30 (1981), 364-371.
  • [10] D. Goldfeld and P. Sarnak, Sums of Kloosterman sums, Inventiones Math., 71 (1983), 243-250.
  • [11] J. Greene, Character sum analoguesfor hypergeometric and generalized hypergeometric functions over finite fields, Ph.D. thesis,Universityof Minnesota, 1984.
  • [11A] J. Greene, Hypergeometric functions overfinite fields, preprint.
  • [12] J. Greene and D. Stanton, A character sum evaluation and Gaussian hypergeometric series, J. Number Theory, (to appear).
  • [13] J. Greene and D. Stanton, The triplicationformula for Gauss sums, preprint.
  • [14] A. Helversen-Pasotto, Videntite de Barnes pour les corpsfinis, C. R. Acad. Sci. Paris, Serie A, 286 (1978), 297-300.
  • [15] A. Helversen-Pasotto, Uidentite de Barnes pour les corps finis, Seminaire Delange-Pisot-Poitou (Theorie des Nombres), 19e annee,22(1977/78).
  • [16] A. Helversen-Pasotto, Darstellungen von Gl(3, Fq) und Gausche summen, Math. Ann., 260(1982), 1-21.
  • [17] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, N.Y., 1982.
  • [18] C. Jacobi, lber die Kreisteilung und ihre Anwendung auf die Zahlentheorie, J. reine angew. Math., 30 (1846),166-182; Werke, vol. 6, Chelsea,N. Y., 1969, pp.254-264.
  • [19] N. Koblitz, The number of points on certain families of hypersurfaces over finite fields, Compositio Math., 48 (1983),3-23.
  • [20] N. Lebedev, Special Functions and Their Applications, Dover, N. Y., 1972.
  • [21] W. Li and J. Soto-Andrade, Barnes' identities and representations of GL(2), part I: finite field case, J. reine angew Math., 344 (1983),171-179.
  • [21A] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Mass.,1983.
  • [22] W. Miller, Lie Theoryand Special Functions, AcademicPress,N. Y., 1968.
  • [23] L. Mordell, On some exponential sums related to Kloosterman sums, Acta Arith., 21 (1972), 65-69.
  • [24] L. Mordell, On Salie's sum, Glasgow Math. J., 14 (1973),25-26.
  • [25] E. Rainville, Special Functions, Macmillan, N. Y., 1960.
  • [26] G. Szego, Orthogonal polynomials, AMS Colloq. Publ. 23, 4th ed., Providence, R. I., 1975.
  • [27] N. Vilenkin, Special functions and the theory of group representations, Amer. Math. Soc, Providence, 1968.