Pacific Journal of Mathematics

Some undecidability results for lattices in recursion theory.

Jeffrey S. Carroll

Article information

Source
Pacific J. Math., Volume 122, Number 2 (1986), 319-331.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102701887

Mathematical Reviews number (MathSciNet)
MR831116

Zentralblatt MATH identifier
0558.03021

Subjects
Primary: 03D25: Recursively (computably) enumerable sets and degrees
Secondary: 03D35: Undecidability and degrees of sets of sentences 03D45: Theory of numerations, effectively presented structures [See also 03C57; for intuitionistic and similar approaches see 03F55]

Citation

Carroll, Jeffrey S. Some undecidability results for lattices in recursion theory. Pacific J. Math. 122 (1986), no. 2, 319--331. https://projecteuclid.org/euclid.pjm/1102701887


Export citation

References

  • [Be] C.Bernardi, Onthe relation provable equivalence and on partitions ineffectively inseparable sets, Studia Logica XL, pp. 29-37.
  • [BeS] C.Bernardi and A. Sorbi, Classifying positive equivalence relations, J. Symbolic Logic, 48 (1983), 529-538.
  • [BuS] S. Burris and H. Sankappanavar, Lattice-theoretic decision problems inuniversal algebra, Algebra Universal, 5(1975), 163-177.
  • [Cal] J.Carroll, Recursively enumerable equivalence relations, Dissertation, University of Wisconsin (1984).
  • [Ca2] J.Carroll,Simple and maximal recursivelyenumerable equivalencerelations,preprint.
  • [Ca3] J.Carroll,Degrees of r.e. equivalencerelations,preprint.
  • [Er] J. Ersov, Positive equivalences,Algebra and Logic, 10 (1973), 26-41.
  • [Gu] D. Guichard, Automorphisms and large submodels in effective algebra, Dissertation, University of Wisconsin (1982).
  • [Mo] F. Montagna, Relatively precomplete numerations and arithmetic, J.Philos. Logic, (to appear).
  • [NR1] A. Nerode and J. Remmel, A Survey oflattices ofr.e. substructures, to appear in Recursion Theory, Proceedings ofSymposia of Pure Mathematics, Vol. 42,1985.
  • [NR2] A. Nerode and J. Remmel, Generic objects inrecursion Theory, toappear inThe Proceedings of the Conference on Recursion Theory, Oberwalfach, 1984, Springer-Verlag.
  • [NS] A. Nerode and R. Smith, The undecidability ofthe lattice ofrecursively enumerable subspaces, Proceedings ofthe Third Brazilian Conference on Mathematical Logic, (Recife, 1979), 245-252.
  • [Od] P. Odifreddi, Strong reducibilities,Bull. Amer. Math. Soc, 4(1981), 37-86.
  • [Ra] M. Rabin, A simple method of undecidability proofs and some applications, Logic Methodology and Philosophy of Science Proc. of the 1964 Int'l. Congress, Bar Hillel, ed. pp. 58-68.
  • [Re] J. Remmel, Recursively enumerable boolean algebras, Ann. of Math. Logic, 14 (1978), 75-107.
  • [Ru] M.Rubin, The theory of Boolean algebras with a distinguished subalgebra is undecidable, Ann. Sci. Univ. Clermont #60, Math., 13 (1976), 129-134.
  • [Sa] D. Sachs, The lattice of subalgebras of a Boolean algebra, Canad. J. Math.,14 (1962), 451-460.