Pacific Journal of Mathematics

A description of HSP-like classes, and applications.

Anthony W. Hager

Article information

Pacific J. Math., Volume 125, Number 1 (1986), 93-102.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 18A32: Factorization of morphisms, substructures, quotient structures, congruences, amalgams
Secondary: 06F15: Ordered groups [See also 20F60] 54D30: Compactness


Hager, Anthony W. A description of HSP-like classes, and applications. Pacific J. Math. 125 (1986), no. 1, 93--102.

Export citation


  • [AC] M. Anderson and P. Conrad, Epicomplete l-groups, Alg. Univ., 12 (1981), 224-241.
  • [BKW] A. Bigard, K. Keimel, and S. Wolfenstein, Groupes et Anneaux Reticules, Springer Lecture Notes 608, Berlin, 1977.
  • [HJA. W.] Hager, Cozerofields, Conf. Sem. Di. Math. Univ. Ban, 175 (1980).
  • [H2] Hager, C(X)has no proper functorial hulls, Proc. Special Session on Rings of Continuous Functions, Cincinnati 1982, Marcel Dekker, to appear.
  • [H3] Hager, Algebraic closures of l-groupsof continuousfunctions, ibid.
  • [HMa] A. W. Hager and J. J. Madden, Algebraic classes of abelian torsion-free and lattice-orderedgroups, to appear.
  • [HMo] A. W. Hager and C. M. Monaco, On the category of archimedean l-groups with strong unit, in preparation.
  • [He] H. Herrlich, TopologischeReflexionen and Coreflexionen, Springer Lecture Notes
  • [HS] H. Herrlich and G. Strecker, Category Theory, Allyn and Bacon, Boston, 1973.
  • [IJJ. R.] Isbell, Uniformspaces, Amer. Math. Soc, Providence, 196.
  • [I2] Isbell, Natural sums and abelianizing, Pacific J. Math., 14 (1964), 1265-1281.
  • [I3] Isbell, Structure of categories, Bull. Amer. Math. Soc, 72 (1966), 619-655.
  • [KJJ. F.] Kennison, A note on reflection maps, Illinois J. Math., 11 (1967), 404-409.
  • [K2] Kennison, Full reflective subcategories and generalized covering spaces, Illinois J. Math., 12 (1968), 353-365.
  • [KS] V. Kannan and T. Soundararajan, Properties that are productive, closed-hereditary and surjective, Topology and its Appl., 12 (1981), 141-146.
  • [P] R. S. Pierce, Introduction to the Theory of Abstract Algebras. Holt, Rhinehart, and Winston, NY (1968).