Pacific Journal of Mathematics

The Dirac monopole and induced representations.

R. Langlands

Article information

Pacific J. Math., Volume 126, Number 1 (1987), 145-151.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 81C05
Secondary: 22E45: Representations of Lie and linear algebraic groups over real fields: analytic methods {For the purely algebraic theory, see 20G05} 81G10


Langlands, R. The Dirac monopole and induced representations. Pacific J. Math. 126 (1987), no. 1, 145--151.

Export citation


  • [1] J. D. Bjorken and S. D. Drell, Relatiistic Quantum Mechanics, (1964).
  • [2] P. A. M. Dirac, Quantised singularities in the electromagneticfield, Roy. Soc. London, Proc, A 133 (1931).
  • [3] N. Dunford and J. Schwartz, Linear Operators, Part II (1963).
  • [4] A. S. Goldhaber, Diracparticle in a magneticfield: Symmetries and their breaking by monopole singularities, Phys. Rev. D, 16,No. 6 (1977).
  • [5] Harish-Chandra, Motion of an electron in the field of a magnetic pole, Phys. Rev., 74 (1948).
  • [6] Y. Kazama, C. N. Yang, and A. S. Goldhaber, Scattering of a Dirac particle with charge ze by afixed magnetic monopole, Phys. Rev. D 15,No. 8 (1977).
  • [7] E. T. Whittaker, An expression of certain knownfunctions as generalized hypergeomet- ricfunctions, Bull.Amer. Math. Soc.,10 (1903).
  • [8] T. T. Wu and C. N. Yang, Dirac monopole without strings: Monopole harmonics, Nucl. Phys. B., 107 (1976).