Pacific Journal of Mathematics

Schrödinger operators with a nonspherical radiation condition.

Yoshimi Saitō

Article information

Source
Pacific J. Math., Volume 126, Number 2 (1987), 331-359.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102699807

Mathematical Reviews number (MathSciNet)
MR869782

Zentralblatt MATH identifier
0657.35041

Subjects
Primary: 35P25: Scattering theory [See also 47A40]
Secondary: 35J10: Schrödinger operator [See also 35Pxx] 47F05: Partial differential operators [See also 35Pxx, 58Jxx] (should also be assigned at least one other classification number in section 47) 81C05

Citation

Saitō, Yoshimi. Schrödinger operators with a nonspherical radiation condition. Pacific J. Math. 126 (1987), no. 2, 331--359. https://projecteuclid.org/euclid.pjm/1102699807


Export citation

References

  • [I] S. Agmon, Spectral properties of Schfdinger operators and scattering theory, Ann. Scuola Nor. Sup. Pisa, (4) 2 (1975), 151-281.
  • [2] G. Barles, (private communications),1985.
  • [3] M. Ben-Artzi, A limiting absorption principle for Schfdinger operators with spheri- cally symmetric explodingpotentials, Israel J. Math.,40 (1981), 259-274.
  • [4] M. S. P. Eastham, W. D. Evans, and J. B. McLeod, The essential self-adjointness of Schfdinger-type operators,Arch. Rational Mech. Anal., 60 (1976), 185-204.
  • [5] M. S. P. Eastham and H. Kalf, Schrodinger-type Operators with Continuous Spec- trum, Pitnum Advanced Publishing Program, (Boston, Putnum, 1982).
  • [6] D. M. Eidus, The principle of limiting absorption, Mat. Sb., 57 (1962), 13-4 (Amer. Math. Soc. Transl, (2) 47 (1965), 157-191).
  • [7] T. Ikebe and T. Kato, Uniqueness of the self-adjoint extension of singular elliptic differential operators, Arch. Rational Mech. Anal., 9 (1962), 77-92.
  • [8] T. Ikebe and Y. Sait, Limiting absorption method and absolute continuity for the Schrodinger operator,J. Math. Kyoto Univ., 7 (1972), 513-542.
  • [9] H. Isozaki, Eikonal equations and spectral representations for long-rangeSchrodinger Hamiltonians, J. Math. Kyoto Univ., 20 (1980), 243-261.
  • [10] W. Jager, Ein gewohnlicher Differentialoperator zweiter Ordnung fur Funktionen mit Werten in einem ilbertraum, Math. Z., 113 (1970), 68-98.
  • [II] W. lager and P. Rejto, Limiting absorptionprinciple for some Schrodinger operators with exploding potentials, I, II, J. Math. Anal. Appl., 91 (1983), 192-228, 95 (1983), 169-194.
  • [12] A. Jensen, E. Moure, and P. Perry, Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. Henri Poincare, 41 (1984), 207-225.
  • [13] T. Kato, Schrodinger operators with singular potentials, Israel J. Math., 13 (1972), 135-148.
  • [14] P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Research Notes in Mathematics, 69 (1982), Pitman,London.
  • [15] K. Mochizuki, Growth properties of solutions of second order elliptic differential equations, J. Math. Kyoto Univ., 16 (1976), 351-373.
  • [16] K. Mochizuki and J. Uchiyama, Radiation conditions and spectral theory for 2-body Schrodinger operators with "oscillating" long-range potentials I, J. Math. Kyoto Univ., 18 (1978), 377-408.
  • [17] K. Mochizuki and J. Uchiyama, Time dependent representations of the stationary wave operators for '''oscillat- ing" long-rangepotentials,Publ. RIMS Kyoto Univ., 18 (1982), 947-972.
  • [18] E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators, Commun. Math. Phys, 78 (1981), 391-408.
  • [19] T. T. Read, On the essential self-adjointness of powers of Schr'dinger operators, Proc. Roy. Soc. Edinburgh Sect. A, 97A (1984), 233-246.
  • [20] Y. Sait", The principle of limiting absorption for the non-selfadjoint Schr'dinger operator in LN (N 2),Publ. RIMS, Kyoto Univ., 9 (1974), 397-428.
  • [21] Y. Sait", On the asymptotic behavior of the solutions of the Schrdinger equation (- + Q(y) - k)V = F, Osaka J. Math., 14 (1977), 11-35.
  • [22] Y. Sait", Spectral Representations for Schfdinger Operators with Long-range Poten- tials, Lecture Notes in Mathematics, 727, (1979), Springer, Berlin.