Pacific Journal of Mathematics

Localization in the classification of flat manifolds.

Peter Symonds

Article information

Source
Pacific J. Math., Volume 127, Number 2 (1987), 389-399.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102699569

Mathematical Reviews number (MathSciNet)
MR881766

Zentralblatt MATH identifier
0639.53046

Subjects
Primary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20]

Citation

Symonds, Peter. Localization in the classification of flat manifolds. Pacific J. Math. 127 (1987), no. 2, 389--399. https://projecteuclid.org/euclid.pjm/1102699569


Export citation

References

  • [I] L. Auslander and M. Kuranishi, On the holonomy group of locally Euclidean spaces, Ann. Math., 65 (1957), 411-415.
  • [2] A. Babakhanian, CohomologicalMethods in Group Theory, Dekker, New York, 1972.
  • [3] L. Bieberbach, Uber die Bewegunsgruppen der Euklidische Rume, Math. Ann., 70 (1910), 287-336 and 72 (1912), 400-412.
  • [4] L. Charlap, Compact flat Riemannian manifolds I, Ann. Math.,81 (1965), 15-30.
  • [5] L. Charlap and A. Vasquez, Compact flat Riemannian manifolds II, Amer. J. Math., (1965), 551-563.
  • [6] P. Cobb, Manifolds with holonomy group Z2 Z2 and first Betti number zero, J. Differential Geom., 10 (1975), 221-224.
  • [7] C. W. Curtis and I. Reiner, Methods of Representation Theory, John Wiley, New York, 1981.
  • [8] D. Epstein and M. Shub, Expanding endomorphisms of flat manifolds, Topology, 7 (1968), 139-141.
  • [9] P. Hilton and U. Stammbach, A Course in Homological Algebra, Springer-Verlag, Berlin, Heidelberg, New York, 1971.
  • [10] L. C. Pu, Integral representations of non-Abelian groups of orderpq, Michigan Math. J., 12 91985), 231-246.
  • [II] H. Zassenhaus, Beweis eines Satzes uber diskrete Gruppen, Abh. Math. Semin. Univ. Hamburg, 21 (1938), 289-312.