Pacific Journal of Mathematics

Convolution semigroups on hypergroups.

Rupert Lasser

Article information

Source
Pacific J. Math., Volume 127, Number 2 (1987), 353-371.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102699567

Mathematical Reviews number (MathSciNet)
MR881764

Zentralblatt MATH identifier
0652.43001

Subjects
Primary: 60B15: Probability measures on groups or semigroups, Fourier transforms, factorization
Secondary: 43A05: Measures on groups and semigroups, etc.

Citation

Lasser, Rupert. Convolution semigroups on hypergroups. Pacific J. Math. 127 (1987), no. 2, 353--371. https://projecteuclid.org/euclid.pjm/1102699567


Export citation

References

  • [1] C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Berlin-Heidelberg-New York: Springer 1975.
  • [2] W. R. Bloom and H. Heyer, The Fourier transform for probability measures on hypergroups, Rend. Mat., 2 (1982), 315-334.
  • [3] W. R. Bloom and H. Heyer, Convergence of convolutionproducts of probability measures on hypergroups, Rend. Mat, 2 (1982), 547-563.
  • [4] S. Bochner, Sturm-Liouville and heat equations whose eigenfunctions are ultraspherical polynomials or associated Bessel functions, In: Proceedings of the Conference on Differential Equations, pp. 23-48. University of Maryland 1955.
  • [5] J. Faraut and K. Harzallah, Distances hilbertiennes invariantes sur un espaces homogene. Ann. Inst. Fourier, 24 (1974), 171-217.
  • [6] G. Forst, The Levyicinrepresentation of negative definite functions, Z. Wahrscheinlichkeitstheorie verw. Gebiete,34 (1976), 313-318.
  • [7] G. Gasper, Banach algebrasfor Jacobi series andposiiity of a kernel, Ann. of Math., 95 (1972),261-280.
  • [8] K. Hartmann, [FIA]B Gruppen undHypergruppen, Mh.Math., 89 (1980),9-17.
  • [9] K. Hartmann, R. W. Henrichs and R. Lasser, Duals of orbit spaces in groups with relatively compact inner automorphism groups are hypergroups, Mh. Math., 88 (1979), 229-238.
  • [10] K. Harzallah, Distances hilbertiennes inariantes sur un espace homogene, In: Theorie du Potentiel et Analyse Harmonique, Lecture Notes in Math. Vol. 404, Springer (1974), 133-137.
  • [11] H. Heyer, Convolution semigroups of probability measures on Gelfand pairs, Expo. Math., 1 (1983),3-45.
  • [12] R. I. Jewett, Spaces with an abstract convolution of measures, Adv. in Math., 18 (1975), 1-101.
  • [13] M. Kennedy, A stochastic process associated with ultraspherical polynomials, Proc. Royal Irish Acad., 61 Sec.A, (1961),89-100.
  • [14] R. Lasser, Orthogonal polynomials and hypergroups, Rend. Math., 3 (1983),185-209.
  • [15] R. Lasser, Fourier-Stieltjes transforms on hypergroups, Analysis, 2 (1982), 281-303.
  • [16] J. Liukkonen and R. Mosak, Harmonic analysis and centers of group algebras, Trans. Amer. Math. Soc, 195 (1974), 147-163.
  • [17] R. Mosak, The U-and C*-algebras of [FIA]B groups and their representations, Trans. Amer. Math. Soc, 163 (1972),277-310.
  • [18] K. R. Parthasarathy, Probability Measures on Metric Spaces, NewYork-London: Academic Press1967.
  • [19] K. A. Ross, Centers of hypergroups, Trans. Amer. Math. Soc,243 (1978),251-269.
  • [20] A. Schwartz, The structure of the algebra of Hankel transforms and the algebra of HankeUStieltjes transforms, Canad. J. Math, 23 (1971),236-246.
  • [21] R. Spector, Aperu de la theorie des hypergroupes, In: Analyse Harmonique sur les Groupes de Lie, Lecture Notes in Math. Vol. 497, Springer(1975), 643-673.
  • [22] R. Spector, Mesures invariantes dur les hypergroupes, Trans. Amer. Math. Soc, 239 (1978), 147-165.
  • [23] T. W. Wilcox, A note on groups with relatively compact conjugacy classes, Proc. Amer. Math. Soc, 42 (1974),326-329.