Pacific Journal of Mathematics

$(s)$-nuclear sets and operators.

K. Astala and M. S. Ramanujan

Article information

Pacific J. Math., Volume 127, Number 2 (1987), 233-246.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 47B10: Operators belonging to operator ideals (nuclear, p-summing, in the Schatten-von Neumann classes, etc.) [See also 47L20]
Secondary: 47D30


Astala, K.; Ramanujan, M. S. $(s)$-nuclear sets and operators. Pacific J. Math. 127 (1987), no. 2, 233--246.

Export citation


  • [1] A. Anselone, Collective Compact Approximation Theory and Applications to Integral Equations, Prentice-Hall 1971.
  • [2] H. Apiola, On the tensorproduct and product Hom(/, g) of compact operators in locally convex topological vector spaces, Ann. Acad. Sci. Fenn. Ser A I no. 544, (1973), 33pp.
  • [3] H. Apiola, On tensorproducts of locallyconvex ^-spaces with applications to -nuclearity, Math. Nachr, 94 (1980),291-302.
  • [4] K. Astala, On measures of noncompactness and ideal variations in Banach spaces, Ann. Acad. Sci. Fenn. Ser.A I Math. Diss., 29 (1980), 42pp.
  • [5] F. F. Bonsall, Compact linear operatorsfrom an algebraic standpoint, Glasgow Math. I, 8 (1967),41-49.
  • [6] A. S. Geue, Bornology, Schauder type theorems and collective compactness, Ph. D. thesis, Flinders University of South Australia,1977.
  • [7] T. W. Palmer, Totallyboundedsets of precompact linear operators, Proc. Amer. Math. Soc, 20 (1969), 101-106.
  • [8] A. Pietsch, Operator Ideals, VEB Deutscher Verlag der Wissenschaften,Berlin, 1978.
  • [9] M. S. Ramanujan, Power series spaces () and associated A(a)-nuclearity, Math. Ann., 189 (1970), 161-168.
  • [10] M. S. Ramanujan and T. Terzioglu, Diametral dimensions of Cartesian products, stability of smooth sequence spaces and applications, J. Reine Angew. Math., 280 (1976), 163-171.
  • [11] M. S. Ramanujan and B. Rosenberger, On (, P)-nuclearity, Compositio Math.,34 (1977), 113-125.
  • [12] T. Terzioglu, On the diametral dimension of the projectie tensor product, Istanbul Univ. Fen. Fak. Mecn. Ser. A, 38 (1973), 5-10.
  • [13] K. Vala, On compactsets of compact operators, Ann. Acad. Sci. Fenn. Ser. A I no. 351 (1964), 9 pp.