Pacific Journal of Mathematics

Stable parallelizability of partially oriented flag manifolds.

P. Sankaran and P. Zvengrowski

Article information

Source
Pacific J. Math., Volume 128, Number 2 (1987), 349-359.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102699107

Mathematical Reviews number (MathSciNet)
MR888523

Zentralblatt MATH identifier
0592.57018

Subjects
Primary: 57R15: Specialized structures on manifolds (spin manifolds, framed manifolds, etc.)

Citation

Sankaran, P.; Zvengrowski, P. Stable parallelizability of partially oriented flag manifolds. Pacific J. Math. 128 (1987), no. 2, 349--359. https://projecteuclid.org/euclid.pjm/1102699107


Export citation

References

  • [I] J. F. Adams, Vectorfields on spheres,Ann. Math, (3) 75 (1962), 603-632.
  • [2] E. Antoniano, Sobre las variedades de Stiefel projectivas, Tesis, CIEA del IPN, Mexico, D. F.(1976).
  • [3] E. Antoniano,S. Gitler,J. Ucci, and P. Zvengrowski, On the K-theory and paralleliz- ability ofprojective Stiefel manifolds,preprint.
  • [4] V. Bartk, and J. Korba, Stiefel-Whitney characteristic classesandparallelizability of Grassmann manifolds, Proceedings of the 12th Winter School on Abstract Analysis, Supplemento ai Rendicontidel Circolo Mathematico di Palermo -6-(1984).
  • [5] A. Borel, La cohomologie mod 2 de certains espaceshomogenes, Comm.Math. Helv, 27 (1953), 165-197.
  • [6] A. Borel and F. Hirzebruch, Characteristic classesand homogeneous spaces-I, Amer. J. Math, 80 (1958), 458-535.
  • [7] G. E. Bredon and A. Kosinski, Vectorfields on -manifolds, Ann. Math, 84 (1966), 85-90.
  • [8] M. Fuj, KO-groups ofprojective spaces,Osaka J. Math, 4 (1967), 141-149.
  • [9] S. G. Hoggar, On KO-theory of Grassmannians, Quart. J. Math. Oxford (2), 20 (1969), 447-463.
  • [10] D. Husemoller, FibreBundles, 2nd Ed. (1975) Springer-Verlag. GTM-20.
  • [II] M. Kervaire, Non-parallelizability of the n-sphere for n > 7, Proc. Nat. Acad. Sci, U.S.A. 44 (1958), 504-537.
  • [12] J. Korba, Vectorfields on real flag manifolds, Ann. Global Anal. Geom, 3 (1985).
  • [13] K. Y. Lam, A formula for the tangent bundle of flag manifolds and related manifolds, Trans. Amer. Math. Soc, 213 (1975), 305-314.
  • [14] M. L. Leite and I. D. Miatello, Linear vectorfields on Gn k, Proc. Amer. Math. Soc, 80 (1980), 673-677.
  • [15] I. D. Miatello and R. J. Miatello, On stable parallelizability of Gn kand related manifolds, Math. Ann., 259 (1982), 343-350.
  • [16] J. Milnor, Some consequences of a theorem of Bott, Ann. Math, (2) 68 (1958), 444-449.
  • [17] P. Sankaran, Vectorfields on flag manifolds, Ph.D. Thesis, The University of Calgary, Calgary, Alberta (1985).
  • [18] P. Sankaran and P. Zvengrowski, On stableparallelizability of flag manifolds, Pacific J. Math, 122 (1986), 455-458.
  • [19] N. Steenrod, Topology of Fibre Bundles, Princeton Univ. Press, Princeton, N. J. (1951).
  • [20] R. Stong, Semicharacteristics of oriented Grassmannians J. Pure Appl. Algebra, 33 (1984), 97-103.
  • [21] W. Sutherland, A note on the parallelizability of sphere bundles over spheres, J. London Math. Soc, 39 (1964), 55-62.
  • [22] S. Trew and P. Zvengrowski, Non-parallelizability of Grassmann manifolds, Canad. Math. Bull. (1), 27 (1984), 127-128.
  • [23] P. Zvengrowski, Uber die parallelisierbarkeit von Stiefel Mannifaltigkeiten,For- schungsinstitut fur Mathematik, ETH Zurich und University of Calgary, April 1976.