Pacific Journal of Mathematics

On the congruence lattice of a frame.

B. Banaschewski, J. L. Frith, and C. R. A. Gilmour

Article information

Source
Pacific J. Math., Volume 130, Number 2 (1987), 209-213.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102690174

Mathematical Reviews number (MathSciNet)
MR914098

Zentralblatt MATH identifier
0637.06006

Subjects
Primary: 06C99: None of the above, but in this section
Secondary: 54A99: None of the above, but in this section

Citation

Banaschewski, B.; Frith, J. L.; Gilmour, C. R. A. On the congruence lattice of a frame. Pacific J. Math. 130 (1987), no. 2, 209--213. https://projecteuclid.org/euclid.pjm/1102690174


Export citation

References

  • [I] B. Banaschewski, Coherent Frames, "Continuous Lattices" Springer LNM 871, 12-19. Springer-Verlag Berlin Heidelberg New York, 1981.
  • [2] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloquium Publications vol. 25, Third edition, American Mathematical Society 1967.
  • [3] G. C. L. Brummer, On some bitopologically induced monads in TOP, Bremen Mathem. Arbeitspapiere, 18 (1979), 13-3Oa.
  • [4] C. H. Dowker and D. Papert, Quotientframes and subspaces, Proc. London Math. Soc, (3) 16 (1966), 275-296.
  • [5] J. L Frith, Structuredframes, Doctoral Diss. University of Cape Town 1986.
  • [6] R. E. Hoffmann, On the sobrificationremainderSX\ X, Pacific J. Math., 83 (1979), 145-156.
  • [7] P. T. Johnstone, Stone Spaces, Cambridge University Press 1982.
  • [8] H.-P. A. Kmzi and G. C. L. Brummer, Sobrification and bicompletion of totally boundedquasi-uniform spaces,to appear.
  • [9] D. S. Macnab, Modal operatorson Heyting algebras,Algebra Universalis, 12 (1981), 5-29.
  • [10] H. Simmons, A framework for topology,Logic Colloquium 77, Studies in Logic 96 North-Holland 1978, 239-251.
  • [II] H. Simmons, Spaces with Booleanassemblies,Colloq. Math., 43 (1980), 23-39.