Pacific Journal of Mathematics

On the Sato-Segal-Wilson solutions of the K-dV equation.

Russell A. Johnson

Article information

Source
Pacific J. Math., Volume 132, Number 2 (1988), 343-355.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102689684

Mathematical Reviews number (MathSciNet)
MR934174

Zentralblatt MATH identifier
0662.35093

Subjects
Primary: 35Q20: Boltzmann equations
Secondary: 34B25 58F07 58G35

Citation

Johnson, Russell A. On the Sato-Segal-Wilson solutions of the K-dV equation. Pacific J. Math. 132 (1988), no. 2, 343--355. https://projecteuclid.org/euclid.pjm/1102689684


Export citation

References

  • [1] F. Calogero, and A. Degasperis, Spectral Transform and Solitons I, North-Holland, Amsterdam, 1982.
  • [2] C. Caratheodory, Funktionentheorie II,zweite Auflage, Birkh'auser Verlag, Basel und Stuttgart, 1961.
  • [3] E. Coddington, and N. Levinson, Theory of Ordinary Differential Equations, Mc- Graw-Hill, New York, 1955.
  • [4] V. Chulaevsky, Inverse Spectral Problem for Limit-Periodic Schrdinger Operators, Functional Anal. Appl., 18 (1984), 230-233.
  • [5] E. Date, M. Kashiwara, M. Jimbo, and T. Miwa, The -function of the Kadomtse- Petiashili equation, Proc. Japan Acad., 57A (1981), 342-347.
  • [6] E. Date, et al., Vertex operators and -functions, Proc. Japan Acad., 57A (1981), 387-392.
  • [7] E. Date, Operator approach to the Kadomtse-Petiashili equation, J. Phys. Soc. Japan, 50 (1981), 3806-3812.
  • [8] E. Date, Transformation groups for Soliton equations, Publ. Res. Inst. Math. Sci., Kyoto, 18 (1982),1077-1110.
  • [9] E. Date, Transformation groups for Soliton equations, Proc. Res. Inst. Math. Sci., Symposium on Non-Linear Integrable Systems, May 1981, pp. 39-119.
  • [10] C. De Concini, and R. Johnson, The algebraic-geometric AKNSpotentials, J. Ergodic Theory and Dyn. Sys., 7 (1987), 1-24.
  • [11] V. Dubrovin, S. Novikov, and V. Matveev, Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and belian varieties, Russian Math. Surveys, 31 (1976), 59-146.
  • [12] N. Dunford, and J. Schwarz, Linear Operators, Vol. II, Interscience, New York, London, 1963.
  • [13] R. Giachetti, and R. Johnson, The Floquet exponent for two-dimensional linear systems with bounded coefficients, J. Math. Pures Appl., 65 (1986),93-117.
  • [14] E. Hille, Lectures on Ordinary Differential Equations, Addison-Wesley, Reading, Mass., 1969.
  • [15] R. Johnson, and J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys.,84 (1982),403-438.
  • [16] S. Kotani, Lyapounov Indices Determine Absolutely Continuous Spectra of Stationary Random One-dimensionalSchr'dinger Operators,TaniguchiSymp. SA, Katata,(1982), 225-247.
  • [17] S. Kotani, On an Inverse Problem for Random Schr'dinger Operators, to appear in Springer Conference Proceedings, 1985.
  • [18] H. McKean, and P. Van Moerbeke, The spectrum of Hills* equation, Invent. Math., 30 (1975),217-274.
  • [19] J. Moser, Integrable Hamiltonian Systems and Spectral Theory, Lezioni Fermiane, Pisa, 1981.
  • [20] M. Naimark, Lineare Differentialoperatoren, Akademie-Verlag, Berlin,1960.
  • [21] S. Novikov, The Periodic Korteweg-de Vries Problem, Functional Anal. Appl, 8 (1974), 54-66.
  • [22] R. Phelps, Lectures on ChoqueVs Theorem, Van Nostrand Math. Studies, American Book Co.,New York, 1966.
  • [23] M. Sato, Soliton equations as dynamical systems on infinite-dimensional Grassmann manifolds, Publ. Res. Inst. Math. Sci., Kokyuroku,439 (1981),30.
  • [24] M. Sato, and Y. Sato, On Hirota's Bilinear Equations I, II, Publ. Res. Inst. Math. Sci., Kokyuroku,388 (1980),183; 414 (1981),181.
  • [25] G. Segal, and G. Wilson, Loop groups and equations of KdV type, Publ. IHES, 61 (1985), 5-65.
  • [26] H. Weyl, Uber gew'hnlichelineare Differentialgleichungen mit Singularitten und die zugehrigen Entwicklungen willkurlicher Funktionen, Math. Annalen, 68 (1910), 220-269.