Pacific Journal of Mathematics

On an analogue of the Wiener Tauberian theorem for symmetric spaces of the noncompact type.

Alladi Sitaram

Article information

Source
Pacific J. Math., Volume 133, Number 1 (1988), 197-208.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102689576

Mathematical Reviews number (MathSciNet)
MR936365

Zentralblatt MATH identifier
0628.43011

Subjects
Primary: 43A85: Analysis on homogeneous spaces
Secondary: 22E46: Semisimple Lie groups and their representations 43A45: Spectral synthesis on groups, semigroups, etc.

Citation

Sitaram, Alladi. On an analogue of the Wiener Tauberian theorem for symmetric spaces of the noncompact type. Pacific J. Math. 133 (1988), no. 1, 197--208. https://projecteuclid.org/euclid.pjm/1102689576


Export citation

References

  • [BST] L. Brown, B. M. Schreiber and B. A. Taylor, Spectral synthesis and thePom- peiu problem, Ann. Inst. Fourier (Grenoble), 23 (1973), 125-154.
  • [BaS] S. C. BagchiandA. Sitaram, Spherical mean periodicfunctions on semi-simple Lie groups, Pacific J. Math., 84 (1979), 241-250.
  • [BeS] C. A. Berenstein and M. Shahshahani, Harmonic analysis and the Pompeiu problem, Amer. J. Math., 105 (1983), 1217-1229.
  • [BeZ] C. A. Berenstein and L. Zalcman, Pompeiu's problem on symmetric spaces, Comment. Math. Helvetici, 55 (1980), 593-621.
  • [C] M. Cowling, Unitary and uniformly bounded representations of some simple Lie groups,in Harmonic Analysis and GroupRepresentations, C.I.M.E (1980), 49-128.
  • [EMI] L. Ehrenpreis and F. I. Mautner, Some properties of the Fourier transform on semi-simple Lie groups-!,Ann. of Math., 61 (1955), 406-439.
  • [EM2] L. Ehrenpreis and F. I. Mautner,Some properties of the Fourier transform on semi-simple Lie groups-ll, Trans. Amer. Math. Soc, 84 (1957), 1-55.
  • [EM3] L. Ehrenpreis and F. I. Mautner, Some properties of the Fourier transform on semi-simple Liegroups- Ill, Trans. Amer. Math. Soc, 901 (1959), 431-484.
  • [Gan] R. Gangolli, On the symmetry ofL\ algebras of locally compact motion groups and the Wiener Tauberian theorem, J. Funct. Anal, 25 (1977), 244-252.
  • [Gar] J. B. Garnett, Bounded Analytic Functions, AcademicPress, 1981.
  • [HI] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962.
  • [H2] S. Helgason, Groups and Geometric Analysis, AcademicPress, 1984.
  • [Kl] R. Krier, Ph.D. thesis, Universityof Nancy, 1973.
  • [K2] R. Krier, Sur les ideaux de I'algebre de Banach des functions integrables bi- invariantes, Osaka J. Math., 12 (1975), 745-765.
  • [R] W. Rudin, Functional Analysis, McGraw-Hill, 1973.
  • [Si] A. Sitaram, An analogue of the Wiener-Tauberian theoremfor sphericaltrans- forms on semi-simple Lie groups, Pacific J. Math., 89 (1980), 439-445.
  • [St] R. J. Stanke, Analytic uniformly bounded representations <?/SU(1,n+1), Trans. Amer. Math. Soc, 290 (1985), 281-302.
  • [Su] M.Sugiura, UnitaryRepresentations andHarmonic Analysis, Kodansha, 1975.
  • [Sut] C. E. Sutherland, l}-versions of Wiener's Tauberian theorems, preprint.
  • [TV] P. Trombi and V. S. Varadarajan, Spherical transforms on semi-simple Lie groups, Ann. of Math., 94 (1971), 246-303.
  • [War] G. Warner, Harmonic Analysis on Semi Simple Lie Groups, Vols. I andII, Springer-Verlag, 1972.
  • [Waw] A. Wawrzyczyk, Spectral analysis and synthesis on symmetric spaces,pre- print.
  • [We] Y. Weit, On the one-sided Wiener's theorem for the motion group, Ann. of Math., Ill (1980), 415-422.