Pacific Journal of Mathematics

The Selberg trace formula for groups without Eisenstein series.

Paul F. Ringseth

Article information

Source
Pacific J. Math., Volume 133, Number 1 (1988), 157-184.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102689574

Mathematical Reviews number (MathSciNet)
MR936363

Zentralblatt MATH identifier
0649.10019

Subjects
Primary: 22E40: Discrete subgroups of Lie groups [See also 20Hxx, 32Nxx]
Secondary: 11F72: Spectral theory; Selberg trace formula 22E45: Representations of Lie and linear algebraic groups over real fields: analytic methods {For the purely algebraic theory, see 20G05}

Citation

Ringseth, Paul F. The Selberg trace formula for groups without Eisenstein series. Pacific J. Math. 133 (1988), no. 1, 157--184. https://projecteuclid.org/euclid.pjm/1102689574


Export citation

References

  • [Al] James Arthur, TheSelberg traceformula for groups of F'-rankone,Annals of Math., 100, No.2 (1974), 326-385.
  • [A2] James Arthur, Traceformula for reductive groups I: Terms associated to classes in G(Q), Duke Math. J., 45 (1978), 911-952.
  • [A3] James Arthur, Eisenstein series and the traceformula, Proc. Symposia in Pure Math., 33, Part I, (1979), 253-274.
  • [A4] James Arthur,A traceformula for reductivegroupsII:Applications of a truncation operator,Compositio Math., 40, Fasc. 1 (1980), 87-121.
  • [A5] James Arthur, On the innerproduct of truncatedEisenstein series,Duke Math. J.,
  • [Dl] Harold Donnelly, Eigenvalue estimates for certain noncompact manifolds, Michigan Math. J., 31 (1984), 349-357.
  • [HC1] Harish-Chandra, Automorphic Forms on Semisimple Lie Groups,Lecture Notes in Math. 62, Springer-Verlag,1968.
  • [HI] Werner Hoffman, The non-semisimple term in the traceformula for rank one lattices, preprint.
  • [LI] Robert P. Langlands, Eisenstein series, Proc. Symposia in Pure Math., 9 (1966), 235-252.
  • [L2] Robert P. Langlands, On the Functional Equations Satisfiedby Eisenstein Series,Lecture Notes in Math. 544, Springer-Verlag,1976.
  • [L3] Robert P. Langlands, Dimension of space of automorphicforms, Proc. Symposiain Pure Math., 9(1966),253-257.
  • [Ml] Polly Moore, Generalized Eisenstein series: Incorporation of a nontrivial representation of, Thesis,Universityof Washington, 1979.
  • [MU1] WernerMller, On the Selberg traceformula for rank one lattices,preprint.
  • [Ol] M. Scott Osborne, Spectral Theoryand Uniform Lattices, Lecture Notes in Representation Theory, Univ. of Chicago Press, Chicago, Illinois, 1977.
  • [OW1] M. Scott Osborne and Garth Warner, The Theory of Eisenstein Systems, Academic Press, 1981.
  • [OW2] M. Scott Osborne and Garth Warner, The Selberg traceformula I: T-rankone lattices, Crelle's J., 324 (1981), 1-113.
  • [OW3] M. Scott Osborne and Garth Warner, The Selberg traceformula II: Partition, reduction, truncation,Pa- cific J. Math., 106 (1983), 307-496.
  • [OW4] M. Scott Osborne and Garth Warner, TheSelberg traceformula III: Inner productformula (initial consid- erations), Memoirs of the Amer. Math. Soc, 283,June 1983.
  • [OW5] M. Scott Osborne and Garth Warner, The Selberg Trace Formula IV: Inner Product Formulae (Final Consideration), Lecture Notes in Math., 1024, Springer-Verlag,1983.
  • [OW6] M. Scott Osborne and Garth Warner, TheSelberg traceformula V: questions of traceclass,Trans. Amer. Math. Soc, 286 (1984), 351-376.
  • [Rl] Paul F. Ringseth, Invariant Eisenstein systems, Ph. D. dissertation,Uni- versity of Washington, June 1986.
  • [R2] Paul F. Ringseth, On the analytic continuation of c-functions, preprint.
  • [SI] Atle Selberg, Harmonic analysis and discontinuous groups in weakly sym- metric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc, 20(1956), 47-87.
  • [S2] Atle Selberg, Discontinuous Groupsand Harmonic Analysis, Proc. Int. Congress of Math., Stockholm, 1962.
  • [VI] A. B. Venkov, Spectral Theory of Automorphic Functions, Proc. of the Steklov Institute of Mathematics, 153 (1981).
  • [Wl] G. Warner, Harmonic Analysis on Semi-Simple Lie Groups,Vols. I and II, Springer-Verlag, 1972.
  • [W2] G. Warner, Selberg's traceformula for nonuniform lattices: The R-rank one case, Advances in Math. Studies, 6 (1979), 1-142.
  • [W3] G. Warner, Traceability on the discrete spectrum, Contemporary Math., 53 (1986).
  • [W4] G. Warner, Elementary aspects of the theory ofHecke operators,to appear.