Pacific Journal of Mathematics

Representing homology classes of ${\bf C}{\rm P}^2#\;\overline{{\bf C}{\rm P}}{}^2$.

Feng Luo

Article information

Source
Pacific J. Math., Volume 133, Number 1 (1988), 137-140.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102689571

Mathematical Reviews number (MathSciNet)
MR936360

Zentralblatt MATH identifier
0655.57026

Subjects
Primary: 57R95: Realizing cycles by submanifolds
Secondary: 57N13: Topology of $E^4$ , $4$-manifolds [See also 14Jxx, 32Jxx]

Citation

Luo, Feng. Representing homology classes of ${\bf C}{\rm P}^2#\;\overline{{\bf C}{\rm P}}{}^2$. Pacific J. Math. 133 (1988), no. 1, 137--140. https://projecteuclid.org/euclid.pjm/1102689571


Export citation

References

  • [1] S. K. Donaldson, Self-dual connections and the topology of smooth4-manifolds, Bull. Amer. Math. Soc, (N.S.) 8 (1983), 81-83.
  • [2] M. H. Freedman, The topology of four-dimensional manifolds, J. Diff. Geom., 17 (1982), 357-453.
  • [3] M. Kervaire and J. Milnor, On 2-spheres in 4-manifolds,Proc. Nat. Acad. Sci. USA, 47 (1961), 1651-1657.
  • [4] K. Kuga, Representing homology classesofS2 x S2, Topology, 23 (1984), 133- 138.
  • [5] R. Mandelbaum, Four-dimensional topology, Bull. Amer. Math. Soc, (N.S.) 2 (1980), 1-159.
  • [6] V. A. Rohlin, Two-dimensional submanifolds offour-dimensional manifolds. J. Funct. Anal, and Appl., 5 (1971), 39-48.
  • [7] C. T. C. Wall, Diffeomorphisms of4-manifolds, J. London Math. Soc, 39 (1964), 131-140.