Pacific Journal of Mathematics

Amenability and Kunze-Stein property for groups acting on a tree.

Claudio Nebbia

Article information

Pacific J. Math., Volume 135, Number 2 (1988), 371-380.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 43A07: Means on groups, semigroups, etc.; amenable groups
Secondary: 05C05: Trees 20B27: Infinite automorphism groups [See also 12F10]


Nebbia, Claudio. Amenability and Kunze-Stein property for groups acting on a tree. Pacific J. Math. 135 (1988), no. 2, 371--380.

Export citation


  • [1] W. Betori and M. Pagliacci, Harmonic analysisfor groups acting on trees, Boll. Un. Mat. ItaL, 3-B (1984), 333-349.
  • [2] P. Cartier, Geometrie et analyse sur les arbres, Sem. Bourbaki 1971/72 407, Lecture Notes in Math. 317, Springer-Verlag, 123-140.
  • [3] P. Cartier, Functions harmoniques sur un arbres, Symposia Math., 9 (1972), 203-270.
  • [4] F. Choucroun, Groupes operant simplement transitivement sur un arbre ho- mogene et plongements dans PGL2(A:), C. R. Acad. Sci. Paris, 298 (1984), 313-315.
  • [5] C. Nebbia, Groups of isometries of a tree and the Kunze-Stein phenomenon, Pacific J. Math., 133 (1988), 141-149.
  • [6] J. Tits, Sur le groupe des automorphismes d'un arbre, Essays on topology and related topics, Memoires dedies a G. de Rham, Springer-Verlag 1970, 188-211.
  • [7] J. Tits, A "theorem of Lie-Kolchin"for trees, Contributions to Algebra, A Col- lection of Papers Dedicated to Ellis Kolchin, Academic Press 1977, 377-388.
  • [6] J. Tits, foreach Wiener integrable function F(x) (1.3) (B)=[F(x)mw(dx)=E(F\^)mw(dx) JX\B)JX,-[(B) = f E{F(x)\X{x)=)Pxd),B <=<%",