Pacific Journal of Mathematics

Some affine geometric aspects of operator algebras.

Yaakov Friedman and Bernard Russo

Article information

Source
Pacific J. Math., Volume 137, Number 1 (1989), 123-144.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102650539

Mathematical Reviews number (MathSciNet)
MR983331

Zentralblatt MATH identifier
0679.46048

Subjects
Primary: 46L10: General theory of von Neumann algebras
Secondary: 17C65: Jordan structures on Banach spaces and algebras [See also 46H70, 46L70] 46L70: Nonassociative selfadjoint operator algebras [See also 46H70, 46K70]

Citation

Friedman, Yaakov; Russo, Bernard. Some affine geometric aspects of operator algebras. Pacific J. Math. 137 (1989), no. 1, 123--144. https://projecteuclid.org/euclid.pjm/1102650539


Export citation

References

  • [1] E. Alfsen, H. Hanche-Olsen, and F. Shultz, State spaces of C*-algebras,Acta Math., 144(1980), 267-305.
  • [2] E. Alfsen and F. Shultz, State spaces of Jordan algebras, Acta Math., 140 (1978), 155-190.
  • [3] T. J. Barton and R. M. Timoney, Weak* continuity of Jordan triple products and applications, Math. Scand., 59 (1986), 177-191.
  • [4] A. Connes, Caracterisation des espaces vectoriels ordonnes sous jacents aux algebres de von Neumann, Ann. Inst. Fourier, Grenoble, 24 (1974), 121-155.
  • [5] T. Dang, Real isometries ofJB*-triples, preprint, 1987.
  • [6] T. Dang andY. Friedman, Classification of JBW* -triplefactors and applications, Math. Scand., 61 (1987), 292-330.
  • [7] T. Dang, Y. Friedman, and B. Russo, Affine geometric proofs of theBanach- Stone theorems ofKadison and Kaup, Proc. of the 1987 Great Plains Operator Theory Seminar,Rocky Mountain J. Math., (to appear).
  • [8] S. Dineen, Complete holomorphic vector fields on the second dual of a Banach space, Math. Scand., 59 (1986), 131-142.
  • [9] E. Effros, Order ideals in a C*-algebra and its dual, Duke Math. J., 30 (1963), 391-412.
  • [10] C. M. Edwards and G. T. Rttiman, On thefacial structure of the unit balls in a JBW*-triple and its predual, preprint, 1987.
  • [11] Y. Friedman and B. Russo, Solution of the contractive projection problem, J. Funct. Anal., 60 (1985), 56-79.
  • [12] Y. Friedman and B. Russo, Structure of the predual of a JBW*-triple, J. Reine Angew. Math., 356 (1985), 67-89.
  • [13] Y. Friedman and B. Russo,A Gelfand-Naimark Theoremfor JB*-triples, Duke Math. J., 53 (1986), 139-148.
  • [14] Y. Friedman and B. Russo, A geometric spectral theorem, Quart. J. Math. Oxford (2), 37 (1986), 263-277.
  • [15] Y. Friedman and B. Russo,Affine structure offacially symmetric spaces, Math. Proc. Camb. Philos. Soc. (to appear).
  • [16] G. Horn, Characterization of the predual and ideal structure of a JBW*-triple, Math. Scand., 61 (1987), 117-133.
  • [17] G. Horn, Classification of JBW*-triples of type I, Math. Z., 196 (1987),271-291.
  • [18] G. Horn and E. Neher, Classification of continuous JBW*-triples, Trans. Amer. Math. Soc, 306 (1988), 553-578.
  • [19] B. Iochum, Cones Autopolaires et Algebres de Jordan, Lecture Notes in Math. 1049, Springer-Verlag, New York, 1984.
  • [20] W. Kaup, Algebraic characterization of symmetric complex Banach manifolds, Math. Ann., 228 (1977), 39-64.
  • [21] W. Kaup,A Riemann Mapping Theoremfor bounded symmetric domains in com- plex Banach spaces, Math. Z., 183 (1983), 503-529.
  • [22] W. Kaup, Contractive projections on Jordan C*-algebrasand generalizations, Math. Scand., 54 (1984), 95-100.
  • [23] K. McCrimmon, Compatible Peirce decompositions of Jordan triple systems, Pacific J. Math., 103 (1982), 57-102.
  • [24] E. Neher, Jordan Triple Systems by the GridApproach, LectureNotes in Math., 1280, Springer-Verlag, New York 1987.
  • [25] L. Stach, A projectionprinciple concerning biholomorphic automorphisms, Acta Sci. Math., 44 (1982), 99-124.
  • [26] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, New York, 1979.
  • [27] H. Upmeier, Uber die Automorphismengruppen von Banach Mannigfaltigkeiten mt Invarianter Metrik, Math. Ann., 223 (1976),279-288.
  • [28] H. Upmeier, Symmetric Banach Manifolds and Jordan C*-algebras, North-Holland, 1985.
  • [29] H. Upmeier,Jordan AlgebrasinAnalysis, Operator Theory,and Quantum Mechanics, AMS-CBMS Regional Conference Series no. 67, 1987.
  • [30] J. P. Vigue, Le groupe des automorphismes analytiques d'un domaine borne d'un espacede Banach complexe. Application aux domains homes symmetriques, Ann. Sci. Ec. Norm. Sup., 4e serie, 9 (1976), 203-282.