Pacific Journal of Mathematics

Small subset of the plane which almost contains almost all Borel functions.

Janusz Pawlikowski

Article information

Source
Pacific J. Math., Volume 144, Number 1 (1990), 155-160.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102645831

Mathematical Reviews number (MathSciNet)
MR1056671

Zentralblatt MATH identifier
0739.28001

Subjects
Primary: 28A05: Classes of sets (Borel fields, $\sigma$-rings, etc.), measurable sets, Suslin sets, analytic sets [See also 03E15, 26A21, 54H05]
Secondary: 03E15: Descriptive set theory [See also 28A05, 54H05] 04A15

Citation

Pawlikowski, Janusz. Small subset of the plane which almost contains almost all Borel functions. Pacific J. Math. 144 (1990), no. 1, 155--160. https://projecteuclid.org/euclid.pjm/1102645831


Export citation

References

  • [C] T. Carlson, Dual Borel conjecture,unpublished.
  • [CP] J. Cicho and J. Pawlikowski, On subsets of the plane and on Cohen reals, J. Symbolic Logic, 51 (1986), 560-569.
  • [L] G. G. Lorentz, On a problem of additive number theory, Proc. Amer. Math. Soc, 5(1954), 838-841.
  • [M] A. W. Miller, Some properties of measure and category, Trans. Amer. Math. Soc, 266(1981), 93-114.
  • [P] J. Pawlikowski, Why Solovay real produces Cohen real, J. Symbolic Logic, 51 (1986), 957-968.