Pacific Journal of Mathematics

Uniqueness for a nonlinear abstract Cauchy problem.

Alan V. Lair

Article information

Source
Pacific J. Math., Volume 144, Number 1 (1990), 105-129.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102645828

Mathematical Reviews number (MathSciNet)
MR1056668

Zentralblatt MATH identifier
0724.35002

Subjects
Primary: 34G20: Nonlinear equations [See also 47Hxx, 47Jxx]
Secondary: 34A12: Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions 34A40: Differential inequalities [See also 26D20] 47H15

Citation

Lair, Alan V. Uniqueness for a nonlinear abstract Cauchy problem. Pacific J. Math. 144 (1990), no. 1, 105--129. https://projecteuclid.org/euclid.pjm/1102645828


Export citation

References

  • [1] S. Agmon and L. Nirenberg, Lower bounds and uniqueness theoremsfor solutions of differential equations in a Hubert space,Comm. Pure Appl. Math., 20 (1967), 207-229.
  • [2] H. O. Fattorini, Ordinary differential equations in linear topologicalspaces I, J. Differential Equations, 5 (1969), 72-105.
  • [3] H. O. Fattorini, Ordinary differential equations in linear topologicalspaces II, J. Differen- tial Equations, 6 (1969), 50-70.
  • [4] H. O. Fattorini and A. Radnitz, The Cauchy problem with incomplete initial data in Banach spaces,Michigan Math. J., 18 (1971), 291-320.
  • [5] G. N. Hile and M. H. Protter, The Cauchy problem and asymptotic decay for solutions of differential inequalities in Hubert space,Pacific J. Math., 99 (1982), 57-88.
  • [6] A. V. Lair,A unique continuation theorem involving a degenerate parabolic op- erator,Proc. Amer. Math. Soc, 66 (1977),41-45.
  • [7] A. V. Lair, Uniqueness for singular backward parabolic inequalities, Proc. Amer. Math. Soc, 98 (1986), 56-60.
  • [8] M. Lees and M. H. Protter, Unique continuation for parabolic equations and inequalities, Duke Math. J., 28 (1961),369-382.
  • [9] H. A. Levine, On the uniqueness of bounded solutions to u'{t) = (t)u{t) and u"(t) = A(t)u(t)in Hilbert space, SIAM J. Math. Anal, 4 (1973),250-259.
  • [10] H. A. Levine, Some new uniqueness and continuous dependence resultsfor evolutionary equations of indefinite type: the weighted energy method, J. Differential Equa- tions, 19 (1975),330-343.
  • [11] A. C.Murray, Uniquenessand continuous dependencefor the equations ofelasto- dynamics without the strain energyfunction, Arch. Rat. Mech. Anal., 47(1972), 195-204.
  • [12] M. H. Protter, Unique continuation for elliptic equations, Trans. Amer. Math. Soc, 95 (1960), 81-91.