Pacific Journal of Mathematics

A comparison algebra on a cylinder with semi-periodic multiplications.

Severino T. Melo

Article information

Source
Pacific J. Math., Volume 146, Number 2 (1990), 281-304.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102645158

Mathematical Reviews number (MathSciNet)
MR1078383

Zentralblatt MATH identifier
0734.47025

Subjects
Primary: 47G30: Pseudodifferential operators [See also 35Sxx, 58Jxx]
Secondary: 46L99: None of the above, but in this section 47A53: (Semi-) Fredholm operators; index theories [See also 58B15, 58J20] 47D25 47F05: Partial differential operators [See also 35Pxx, 58Jxx] (should also be assigned at least one other classification number in section 47) 58G99

Citation

Melo, Severino T. A comparison algebra on a cylinder with semi-periodic multiplications. Pacific J. Math. 146 (1990), no. 2, 281--304. https://projecteuclid.org/euclid.pjm/1102645158


Export citation

References

  • [1] M. Breuer and H. O. Cordes, On Banach algebras with -symbol, part 2, J. Math. Mech., 14 (1965), 299-314.
  • [2] H. O. Cordes, Spectral theory of linear differential operators and comparison algebras,London Math.Soc. Lecture NotesVol. 76, Cambridge University Press 1987.
  • [3] H. O. Cordes, On the two-fold symbol chain of a C*-algebra of singular integral operators on a polycylinder, Revista Mat. Iberoamericana, 2 (1986), 215-234.
  • [4] H. O. Cordes, Elliptic pseudo-differentialoperators,an abstract theory, Springer Lecture Notes in Math., Vol. 756, Berlin, Heildelberg, New York 1979.
  • [5] H. O. Cordes and S. T. Melo, An algebra of singular integral operators with kernels of bounded oscillation, and application to periodic differential operators, J. Differential Equations, 75 (1988), 216-278.
  • [6] R. Lockhart and R. McOwen, Elliptic differential operatorson noncompact man- ifolds,Annali della Scuola Normale Superiore di Pisa, IV-XII (1985), 409-447.
  • [7] S. T. Melo, ComparisonAlgebras with PeriodicSymbols, Thesis, Berkeley 1988.
  • [8] C. H. Taubes, Gauge theory on asymptotically periodic 4-manifolds,J. Differ- ential Geometry, 25 (1987), 363-430.