Pacific Journal of Mathematics

On two polynomial spaces associated with a box spline.

Nira Dyn, Amos Ron, and Carl de Boor

Article information

Source
Pacific J. Math., Volume 147, Number 2 (1991), 249-267.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102644909

Mathematical Reviews number (MathSciNet)
MR1084708

Zentralblatt MATH identifier
0713.41005

Subjects
Primary: 41A15: Spline approximation

Citation

de Boor, Carl; Dyn, Nira; Ron, Amos. On two polynomial spaces associated with a box spline. Pacific J. Math. 147 (1991), no. 2, 249--267. https://projecteuclid.org/euclid.pjm/1102644909


Export citation

References

  • [BHl] C. de Boor and K. Hllig, B-splines from parallelepipeds,J. d'Anal. Math., 42 (1982/3), 99-115.
  • [BH2] C. de Boor and K. Hllig, Bivariate box splines and smooth pp functions on athree-direction mesh, J. Comput. Applied Math., 9 (1983), 13-28.
  • [BR1] C. de Boor and A. Ron, On multivariate polynomial interpolation,Construc- tive Approx., 6 (1990), 287-302.
  • [BR2] C. de Boor and A. Ron, On polynomial idealsof finite codimension with applicationto box spline theory, J. Math. Anal. Appl., to appear.
  • [DM1] W. Dahmen and C. A. Micchelli, Translates of multivariate splines, Linear Algebra and Appl., 52/3 (1983), 217-234.
  • [DM2] W. Dahmen and C. A. Micchelli, On the local linear independence of trans- lates of a box spline, Studia Math., 82 (1985), 243-263.
  • [DM3] W. Dahmen and C. A. Micchelli, Multivariate E-splines, Advances in Math., 76 (1989), 33-93.
  • [DR1] N. Dyn and A. Ron, Local approximation by certain spaces of multivariate exponential-polynomials, approximation order of exponential box splines and related interpolation problems, Trans. Amer. Math. Soc, 319 (1990), 381- 404.
  • [DR2] N. Dyn and A. Ron, On multivariate polynomial interpolation, in Algorithms for Approxi- mation II, J. C. Mason, M. G. Cox (eds.), Chapman and Hall, London 1990, 177-184.
  • [G] J. A. Gregory, Interpolation to boundary data on the simplex, CAGD, 2 (1985), 43-52.
  • [J] R. Q. Jia, A dual basisfor the integer translates of an exponential box spline, preprint 1988.
  • [R] A. Ron, Relations between the support of a compactly supportedfunction and the exponential-polynomials spanned by its integer translates, Constructive Approx., 5(1989), 297-308.