Pacific Journal of Mathematics

A Riesz theory in von Neumann algebras.

Anton Ströh and Johan Swart

Article information

Source
Pacific J. Math., Volume 148, Number 1 (1991), 169-180.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102644789

Mathematical Reviews number (MathSciNet)
MR1091537

Zentralblatt MATH identifier
0742.46044

Subjects
Primary: 46L10: General theory of von Neumann algebras
Secondary: 47B06: Riesz operators; eigenvalue distributions; approximation numbers, s- numbers, Kolmogorov numbers, entropy numbers, etc. of operators 47D25

Citation

Ströh, Anton; Swart, Johan. A Riesz theory in von Neumann algebras. Pacific J. Math. 148 (1991), no. 1, 169--180. https://projecteuclid.org/euclid.pjm/1102644789


Export citation

References

  • [1] C. A. Akemann and G. K. Pedersen, Ideal perturbations of elements in(&>*- algebras,Math. Scand., 41 (1977), 117-139.
  • [2] B. A. Barnes, G. J. Murphy, M. R. F. Smyth and T. T. West, Riesz and Fredholm Theory in Banach Algebras,Pitman Adv. Publ. Program, London; 1982.
  • [3] M. Breuer, Fredholm theories in von Neumann algebras I, Math. Ann., 178 (1968), 243-254.
  • [4] M. Breuer, Fredholm theories in von Neumann algebras II, Math. Ann., 180 (1969), 313-325.
  • [5] M. Breuer and R. S. Butcher, A generalized Riesz-Schauder decomposition the- orem, Math. Ann., 203 (1973), 211-230.
  • [6] H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, New York, 1978.
  • [7] V. Kaftal, On the theory of compact operatorsin von Neumann algebrasI, Indi- ana Univ. Math. J., 26 (1977), 447-457.
  • [8] V. Kaftal, Almost Fredholm operators in von Neumann algebras,Integral Equations Operator Theory, 5 (1982), 50-70.
  • [9] M. Schechter, Riesz operators and Fredholm perturbations, Bull. Amer. Math. Soc, 74(1968), 1139-1144.
  • [10] M. G. Sonis, On a classof operatorsin vonNeumann algebraswith Segal measure on the projectors,Math. USSR Sbornik, 13 (1971), 344-359.
  • [11] M. Takesaki, Theory of OperatorAlgebras I, Springer, New York, 1979.
  • [12] F. B. Wright, A reductionfor algebras of finite type, Ann. of Math., 60 (1954), 560-570.