Pacific Journal of Mathematics

Quasi-rotation $C^*$-algebras.

H. Rouhani

Article information

Source
Pacific J. Math., Volume 148, Number 1 (1991), 131-151.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102644786

Mathematical Reviews number (MathSciNet)
MR1091534

Zentralblatt MATH identifier
0744.46059

Subjects
Primary: 46L87: Noncommutative differential geometry [See also 58B32, 58B34, 58J22]

Citation

Rouhani, H. Quasi-rotation $C^*$-algebras. Pacific J. Math. 148 (1991), no. 1, 131--151. https://projecteuclid.org/euclid.pjm/1102644786


Export citation

References

  • [I] R. Bott and L. Tu, Differential Forms in Algebraic Topology,Graduate Texts in Mathematics No. 82, Springer Verlag, 1982.
  • [2] L. Brown, P. Green, and M. Rieffel, Stable isomorphism and strong Morita equivalenceof C*-algebras, Pacific J. Math., 71 (1977), 349-363.
  • [3] G. Elliott, On the K-theory of the C*-algebra generated by a projective repre- sentation of a torsion-free abelian group, Operator Algebras and GroupRepre- sentations, Vol. 1, Pitman, London (1984), 157-184.
  • [4] H. Furstenberg, Strict ergodicityand transformation of the torus,Amer. J.Math., 83 No. 4(1961), 573-601.
  • [5] R. Ji, On the crossedproduct C*-algebras associated with Furstenbergtrans- formations on tori, Ph.D. dissertation, State University of New York at Stony Brook, 1986.
  • [6] I. Megory-Cohen, Properties of hyperbolic crossedproduct algebras,Ph.D. dis- sertation, University of California at Berkeley, 1985.
  • [7] J. Packer, K-theoretic invariantsfor C*-algebras associated to transformations and induced flows, J. Funct. Anal., 67 (1986), 25-59.
  • [8] W. Parry, Topics in Ergodic Theory, Cambridge University Press, 1981.
  • [9] G. Pederson, C*-algebras and Their Automorphism Groups, London Math. Soc. Monographs 14, Academic Press, London-New York, 1979.
  • [10] M. Pimsner, Ranges of Traces on KQ of Reduced Crossed Products by Free Groups,Lecture Notes in Mathematics, Vol. 1132, Springer-Verlag, 1985.
  • [II] M. Pimsner, and D. Voiculescu, Exact sequencesfor K-groups and Ext-groups of certain crossed product C*-algebras, J. Operator Theory, 4 (1980), 93-118.
  • [12] S. C. Power, Simplicity of C*-algebras of minimal dynamical systems, J. London Math. Soc, 18 (1978), 534-538.
  • [13] N. Riedel, Classification of the C*-algebras associated with minimal rotations, Pacific J. Math., 101 (1982), 153-161.
  • [14] M. Rieffel, C*-algebras associated with irrational rotations, Pacific J. Math., 93 (1981), 415-429.
  • [15] H. Rouhani, Classification of certain non-commutative three-tori, Ph.D. disser- tation, Dalhousie University, 1988.
  • [16] H. Rouhani, A Furstenberg transformation of the 2-torus without quasi-discrete spec- trum, Canad. Math. Bull., 33 (3) (1990), 316-322.
  • [17] H. Rouhani, Strong Morita equivalencefor the quasi-rotation C*-algebras, preprint, 1989.
  • [18] P. Walters, Ergodic Theory--Introductory Lectures, Lecture Notes in Mathe- matics 458, Springer-Verlag, 1975.
  • [19] H.-S. Yin, A simple proof of the classification of rational rotation C* -algebras, Proc. Amer. Math. Soc, 98 No. 3 (1986), 469-470.