Pacific Journal of Mathematics

Obstruction to prescribed positive Ricci curvature.

Ph. Delanoë

Article information

Source
Pacific J. Math., Volume 148, Number 1 (1991), 11-15.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102644779

Mathematical Reviews number (MathSciNet)
MR1091527

Zentralblatt MATH identifier
0718.53034

Subjects
Primary: 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60]
Secondary: 53C55: Hermitian and Kählerian manifolds [See also 32Cxx]

Citation

Delanoë, Ph. Obstruction to prescribed positive Ricci curvature. Pacific J. Math. 148 (1991), no. 1, 11--15. https://projecteuclid.org/euclid.pjm/1102644779


Export citation

References

  • [1] J.-P. Bourguignon and H. Karcher, Curvatureoperators:pinching estimates and geometric examples, Ann. Scient. Ec. Norm. Sup., 4 serie, 11 (1978), 71-92.
  • [2] E. Calabi, An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J., 25 (1958), 45-56; erratum, ibid., 26 (1959), 707.
  • [3] Ph. Delanoe, Extending Calabi's conjecture to complete non-compact Kahler manifolds which are asymptotically Cn, n > 2, Compositio Math., 75 (1990), 219-230.
  • [4] D. DeTurck and J. Kazdan, Some regularitytheorems in Riemannian geometry, Ann. Scient. Ec. Norm. Sup., 4 serie, 14 (1981), 249-260.
  • [5] D.DeTurck andN.Koiso, Uniqueness andnon-existence of metrics with pre- scribed Ricci curvature, Ann.Inst. Henri Poincare Anal. Non Lin., 1 (1984), 351-359.
  • [6] R.Hamilton, TheRicci curvature equation, Seminar onNonlinear Partial Dif- ferential Equations, Edit. S.S.Chern, M.S.R.I. Publications, 2 (1984), Springer- Verlag, New York, 47-72.
  • [7] E.Hopf, Elementare Bemerkungen ber dieLsungen partieller Differentialgle- ichungen zweiter Ordnung vom elliptischen Typus, Sitz. Preuss.Akad. Wiss., 19 (1927), 147-152.
  • [8] A. Jeune, Solutions de equation deRicci sur unevariete euclidienne aI'infini, C. R.Acad. Sci. Paris, serie I,305(1987), 195-198.
  • [9] J. Kazdan, Prescribing the curvature of a Riemannian manifold, C.B.M.S.re- gional conference series in math., vol. 57,Amer. Math. Soc, Providence, RI, 1985.
  • [10] S. Myers,Riemannian manifolds in thelarge,Duke Math. J.,1 (1935), 39-49.