Pacific Journal of Mathematics

Higher homotopy commutativity of $H$-spaces and the mod $p$ torus theorem.

Yutaka Hemmi

Article information

Source
Pacific J. Math., Volume 149, Number 1 (1991), 95-111.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102644565

Mathematical Reviews number (MathSciNet)
MR1099785

Zentralblatt MATH identifier
0719.55009

Subjects
Primary: 55P45: $H$-spaces and duals

Citation

Hemmi, Yutaka. Higher homotopy commutativity of $H$-spaces and the mod $p$ torus theorem. Pacific J. Math. 149 (1991), no. 1, 95--111. https://projecteuclid.org/euclid.pjm/1102644565


Export citation

References

  • [1] J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math., 72(1960), 20-104.
  • [2] J. Aguade and L. Smith, On the mod/? torus theoremof JohnHubbuck, Math. Z., 191 (1986), 325-326.
  • [3] A Borel, Topics in the Homology Theory of Fibre Bundles, Lecture Notes in Math., vol. 36,Springer-Verlag, Berlin and New York,1967.
  • [4] W. Browder, Homotopycommutative H-spaces, Ann. of Math., 75 (1962),283- 311.
  • [5] J. Ewing, Some examples of sphere bundles over spheres which are loopspaces modp, Bull. Amer. Math. Soc,80 (1974), 935-938.
  • [6] Y. Hemmi, On the cohomologyof finite H-spaces,preprint.
  • [7] J. R. Hubbuck, On homotopy commutative H-spaces,Topology,8 (1969), 119- 126.
  • [8] K. IriyeandA. Kono, Mod/? retractsof G-product spaces,Math. Z.,190(1985), 357-363.
  • [9] N. Iwase, On the K-ring structure of X-projective n-space, Mem. Fac. Sci. Kyushu Univ. Ser. A, 38 (1984),285-297.
  • [10] R. M. Kane, Primitivity and finite H-spaces, Quart. J. Math. Oxford (3), 26 (1975), 309-313.
  • [11] R. M. Kane, Implications in Morave K-theory, Mem.Amer. Math. Soc, 340 (1986).
  • [12] J. P. Lin, A cohomological proof of the torus theorem, Math. Z., 190 (1985), 469-476.
  • [13] A. Liulevicius, Thefactorization of cyclicreducedpowers by secondarycohomol- ogy operations, Mem.Amer. Math. Soc, 42 (1962).
  • [14] C.A. McGibbon, Homotopy commutativity in localizedgroups,Amer. J. Math., 106 (1984),665-687.
  • [15] C.A. McGibbon,Higherforms of homotopy commutativity, Math. Z.,201 (1989),363-374.
  • [16] R. J. Milgram,Iterated loop spaces, Ann. of Math., 84 (1966),386-403.
  • [17] J. W. Milnor andJ. C. Moore, On the structure of Hopf algebras, Ann. of Math., 81 (1965),211-264.
  • [18] N. Shimada and T. Yamanoshita, On triviality of the mod/? Hopf invariant, Japan. J. Math., 31 (1961), 1-25.
  • [19] J. D. Stashef, On homotopy abelian H-spaces, Proc. Cambridge Philos. Soc, 57(1961), 734-745.
  • [20] J. D. Stashef, Homotopy associativity of H-spaces. I, Trans. Amer. Math., Soc, 108 (1963), 275-292.
  • [21] M. Sugawara, On the homotopy-commutativity of groups and loopspaces, Mem. Coll. Sci., Univ. Kyoto, Ser. A, 33 (1960),257-269.
  • [22] D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math., 100 (1974), 1-79.
  • [23] E. Thomas, On functional cup-products and the transgression operator,Arch. Math., 12(1961), 435-444.
  • [24] H. Toda, Composition Methods in Homotopy Groupsof Spheres, Ann. of Math. Studies, vol. 49, Princeton Univ. Press, Princeton, N.J.,1962.
  • [25] F. D.Williams, Higher homotopy-commutativity, Trans. Amer. Math. Soc,139 (1969), 191-206.
  • [26] A. Zabrodsky, On the construction of new finite CW H-spaces, Invent. Math., 16 (1972),260-266.