Pacific Journal of Mathematics

A matrix Volterra integrodifferential equation occurring in polymer rheology.

Hans Engler

Article information

Source
Pacific J. Math., Volume 149, Number 1 (1991), 25-60.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102644563

Mathematical Reviews number (MathSciNet)
MR1099783

Zentralblatt MATH identifier
0727.45006

Subjects
Primary: 76A10: Viscoelastic fluids
Secondary: 45J05: Integro-ordinary differential equations [See also 34K05, 34K30, 47G20] 73F15

Citation

Engler, Hans. A matrix Volterra integrodifferential equation occurring in polymer rheology. Pacific J. Math. 149 (1991), no. 1, 25--60. https://projecteuclid.org/euclid.pjm/1102644563


Export citation

References

  • [I] J. S.Angell and W. E. Olmstead, Singularperturbation analysis of an integrodif- ferential equation modelling filament stretching,Zeitschr. Angew. Math. Physik, 36 (1985), 487-490.
  • [2] B. Bernstein, E. A. Kearsley and L. J. Zapas, A study of stress relaxation with finite strain, Trans. Soc.Rheology,7 (1963), 391-410.
  • [3] P. K. Currie, Constitutive equations for polymer melts predicted by the Doi- Edwards and Curtiss-Bird kinetic theory models, J. Non-Newtonian FluidMe- chanics, 11 (1982), 53-68.
  • [4] M.Doiand S. F.Edwards, The Theoryof Polymer Dynamics, Clarendon Press, Oxford, 1986.
  • [5] M. E. Gurtin,An Introduction to Continuum Mechanics, Academic Press,1981.
  • [6] S. Helgasson, Differential Geometry, Lie Groups, and Symmetric Spaces, Aca- demic Press, London, New York, 1978.
  • [7] G. S.Jordan, A nonlinearsingularlyperturbed Volterra integro-differential equa- tion ofnonconvolution type, Proc. Roy. Soc.Edinburgh, 80A (1978), 235-247.
  • [8] A. Kaye, Non-Newtonian FlowinIncompressible Fluids,Tech. Note 134,College of Aeronautics, Cranfield, England, 1962.
  • [9] A. S. Lodge, Elastic Liquids, AcademicPress, London, NewYork, 1964.
  • [10] A. S. Lodge, Body Tensor Fields in Continuum Mechanics,Academic Press, London, New York, 1974.
  • [II] A. S. Lodge, J. B. McLeod and J. A. Nohel, A nonlinear singularly perturbed Volterraintegrodifferentialequation occurring in polymer rheology, Proc. Roy. Soc. Edinburgh, 80A (1978), 99-137.
  • [12] P.Markowich and M.Renardy,A nonlinear Volterra integrodifferential equation describing the stretching of polymeric liquids, SIAM J. Math. Anal., 14 (1983), 66-97.
  • [13] R. K. Miller, Nonlinear VolterraIntegral Equations, W. A. Benjamin, Menlo Park, 1971.
  • [14] O. Nevanlinna, Numericalsolution of a singularlyperturbed nonlinear Volterra equation, MRCTSR #1881, Univ. of Wisconsin, Madison, 1978.
  • [15] C. S. J. Petrie, Elongational Flows, Pitman Res. Notes in Math. 29, London, San Francisco, Melbourne, 1979.
  • [16] M. Renardy, A class of quasilinearparabolic equations with infinite delay and application to a problem in viscoelasticity,J. Differential Equations, 48 (1983), 280-292.
  • [17] M.Renardy, W. J. Hrusa and J. A. Nohel, MathematicalProblemsinViscoelas- ticity, Longman ScientificandTechnical/John Wiley and Sons, Inc., NewYork, 1987.
  • [18] J. T. Schwartz, NonlinearFunctional Analysis, Gordon and Breach, NewYork, London, Paris, 1969.
  • [19] C. A. Truesdell and W. Noll, The non-linear field theories of mechanics, In: S. Flgge (ed.): Handbuch der Physik /3, Springer, Berlin, Heidelberg, New York, 1965.
  • [20] A. F. H. Ward and G. M. Jenkins, Normal thrust in dynamic torsionfor rubber- like materials, Rheol. Acta, 1 (1958), 110-114.
  • [21] L. J. Zapas, Viscoelastic behavior under large deformations, J. Res. Nat. Bur. Stand., 70A( 1966), 525-532.