Pacific Journal of Mathematics

Classification of essential commutants of abelian von Neumann algebras.

Bruce H. Wagner

Article information

Source
Pacific J. Math., Volume 149, Number 2 (1991), 365-382.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102644469

Mathematical Reviews number (MathSciNet)
MR1105704

Zentralblatt MATH identifier
0718.46030

Subjects
Primary: 46L10: General theory of von Neumann algebras
Secondary: 46L35: Classifications of $C^*$-algebras 47D25

Citation

Wagner, Bruce H. Classification of essential commutants of abelian von Neumann algebras. Pacific J. Math. 149 (1991), no. 2, 365--382. https://projecteuclid.org/euclid.pjm/1102644469


Export citation

References

  • [An] N. T. Andersen, Compact perturbations of reflexive algebras, J. Funct. Anal.. 38 (1980), 366-400.
  • [Ar] W. B. Arveson, Operator algebras and invariantsubspaces, Ann.of Math., 100 (1974), 433-532.
  • [Dl] K. R. Davidson, Nest Algebras: Triangular Forms for Operator Algebras on Hilbert Space,Wiley, New York, 1988.
  • [D2] K. R. Davidson, Similarity and compact perturbations of nest algebras, J. Reine Angew. Math., 348 (1984), 72-87.
  • [DW] K. R. Davidson andB.H.Wagner,Automorphisms ofquasitriangular algebras, J. Funct. Anal., 59 (1984), 612-627.
  • [Di] J. Dixmier, Les algebres d'oprateurs dans espace Hilbertien, Gauthier- Villars, Paris, 1969.
  • [JP] B. E. Johnson and S. K. Parrott, Operatorscommuting with a von Neumann algebramodulo theset of compact operators,J. Funct. Anal., 11 (1972), 39-61.
  • [KR] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras,AcademicPress, Orlando, 1986.
  • [P] J. Plastiras, Compact perturbations of certain von Neumann algebras, Trans. Amer. Math. Soc, 234 (1977), 561-577.
  • [Wl] B. H. Wagner, Automorphisms and derivations of certain operator algebras, Doctoral Dissertation, Universityof California, Berkeley.
  • [W2] B. H. Wagner, Derivations of quasitriangular algebras, Pacific J. Math., 114 (1984), 243-255.
  • [W3] B. H. Wagner, Quasidiagonal operator algebras,Illinois J. Math., (to appear).