Pacific Journal of Mathematics

Invariants for $3$-manifolds from the combinatorics of the Jones polynomial.

W. B. R. Lickorish

Article information

Source
Pacific J. Math., Volume 149, Number 2 (1991), 337-347.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102644467

Mathematical Reviews number (MathSciNet)
MR1105702

Zentralblatt MATH identifier
0728.57011

Subjects
Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}
Secondary: 57N10: Topology of general 3-manifolds [See also 57Mxx]

Citation

Lickorish, W. B. R. Invariants for $3$-manifolds from the combinatorics of the Jones polynomial. Pacific J. Math. 149 (1991), no. 2, 337--347. https://projecteuclid.org/euclid.pjm/1102644467


Export citation

References

  • [1] R. A. Fenn and C. P. Rourke, On Kirby's calculus of links, Topology, 18 (1979), 1-15.
  • [2] L. H. Kauffman, State models and the Jones polynomial, Topology, 26 (1987), 395-407.
  • [3] R. C. Kirby, A calculusfor framed links in S3, Invent. Math., 45 (1978), 35-56.
  • [4] R. C. Kirby and P. Melvin, Evaluations of the Z-manifold invariants ofWitten and Reshetikhin-Turaev for sl(2, C), (to appear).
  • [5] W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math., 76 (1962), 531-540.
  • [6] W. B. R. Lickorish, Linear skein theory and link polynomials, Topology AppL, 27 (1987), 265-274.
  • [7] W. B. R. Lickorish, Polynomials for links, Bull. London Math. Soc, 20 (1988), 558-588.
  • [8] N. Y. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polyno- mials and quantum groups, to appear, Invent. Math.
  • [9] E. Witten, Quantum field theory and Jones' polynomial, Comm. Math. Phys., 121 (1989), 351-399.
  • [16] MILL LANE CAMBRIDGE, CB2 1SB, GREAT BRITAIN