Pacific Journal of Mathematics

Any Blaschke manifold of the homotopy type of ${\bf C}{\rm P}^n$ has the right volume.

C. T. Yang

Article information

Source
Pacific J. Math., Volume 151, Number 2 (1991), 379-394.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102637090

Mathematical Reviews number (MathSciNet)
MR1132398

Zentralblatt MATH identifier
0755.53031

Subjects
Primary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20]
Secondary: 53C22: Geodesics [See also 58E10]

Citation

Yang, C. T. Any Blaschke manifold of the homotopy type of ${\bf C}{\rm P}^n$ has the right volume. Pacific J. Math. 151 (1991), no. 2, 379--394. https://projecteuclid.org/euclid.pjm/1102637090


Export citation

References

  • [1] A. Besse, Manifolds All of Whose Geodesiesare Closed, Ergebnisse der Mathe- matik, No. 93, Springer-Verlag, Berlin, 1978.
  • [2] A. Berger, Blaschke's Conjecturefor Spheres, Appendix D in the book above by A. Besse.
  • [3] R. Bott, On manifolds all of whosegeodesiesare closed, Ann. Math., 60 (1954), 375-382.
  • [4] L. W. Green,Aug Wiedersehensflachen, Ann. math., 78 (1963), 289-299.
  • [5] A. Haefliger, Plongements differentiates de varietes dans varietes,Comment. Math. Helv., 36(1961), 47-81.
  • [6] J. L. Kazdan,An Inequality Arising in Geometry,Appendix E in the book above by A. Besse.
  • [7] H. Samelson, On manifolds with many closed geodesies, Portugal. Math., 22 (1963), 193-196.
  • [8] A. Weinstein, On the volume of manifolds all of whose geodesies are closed,J. Differential Geom., 9 (1974), 513-517.
  • [9] C. T. Yang, Odd-dimensional Wiedersehen manifolds are spheres,J. Differential Geom., 15(1980), 91-96.
  • [10] C. T. Yang, On the Blaschke conjecture,Yau, Seminar on Differential Geometry, pp. 159-171.