Pacific Journal of Mathematics

A note on homotopy complex surfaces with negative tangent bundles.

B. Wong

Article information

Source
Pacific J. Math., Volume 151, Number 2 (1991), 369-377.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102637089

Mathematical Reviews number (MathSciNet)
MR1132397

Zentralblatt MATH identifier
0748.32016

Subjects
Primary: 32J15: Compact surfaces
Secondary: 32J27: Compact Kähler manifolds: generalizations, classification 53C55: Hermitian and Kählerian manifolds [See also 32Cxx] 57R55: Differentiable structures

Citation

Wong, B. A note on homotopy complex surfaces with negative tangent bundles. Pacific J. Math. 151 (1991), no. 2, 369--377. https://projecteuclid.org/euclid.pjm/1102637089


Export citation

References

  • [1] R. Barlow, A simply connected surface of general type with pg = 0, Invent. Math., 79(1985), 293-301.
  • [2] Barth-Peters-Van de Ven, Compact Complex Surfaces, Ergebnisse, Band 4, Springer-Verlag, Berlin, 1984.
  • [3] F. A. Bogomolov, Holomorphic tensorsand vectorbundles on projectivevarieties} Math. USSR Izvestija, 13 (1979), 499-555.
  • [4] E. Calabi-Vessentini, On compact locally symmetric Khler manifolds, Ann. of Math., 71 (1960), 472-507.
  • [5] Chow-Kodaira, On analytic surfaces with two independent meromorphic func- tions, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 319-325.
  • [6] Griffiths, Hermitian differential geometry, Chern class and positive vectorbun- dles, in Global Analysis, Univ. of Tokyo Press and Princeton Univ. Press, (1969), 185-251.
  • [7] S. Kleiman, Ample vector bundles on algebraicsurfaces,Proc. Amer. Math. Soc, 21 (1969),673-676.
  • [8] J. Milnor, On simply-connected 4-manifolds, in Symp. Int. de Topology Alg., Univ. Mexico, Mexico, (1958), 122-128.
  • [9] F.Sakai,Symmetric powersof the cotangent bundleand classificationof algebraic varieties, in Lecture Notes in Math. No. 732, Springer-Verlag, New York, 545- 563.
  • [10] Y.-T. Siu, The complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geom., 17 (1982),55-138.
  • [11] K. Ueno, Classification of Algebraic Varieties and Compact Complex Spaces, Lecture Notes in Math. No.439, Springer-Verlag, Heidelberg,1975.
  • [12] B. Wong, A class of compact complex manifolds with negative tangent bundles, in Math. Z., 185 (1984),217-223.
  • [13] B. Wong, The uniformization of compact Khler surfaces with negative curvature,J. Differential Geom., 16 (1981),407-420.
  • [14] B. Wong,A global moduli space of ample subvarieties on compact Khler manifolds with very negative curvature,Math. Ann., 277 (1987),605-615.
  • [15] J. H. C. Whitehead, On simply-connected ^-dimensionalpolyhedra, Comment. Math. Helv., 22 (1949),48-92.
  • [16] C. T. C. Wall, On simply-connected 4-manifolds, J. London Math. Soc, 39 (1964), 141-149.
  • [17] S. T. Yau, Calabi's conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A., 74 (1977), 1789-1799.
  • [18] S. T. Yau,A general Schwarz lemma for complete Khler manifolds, Amer. J. Math., 100(1978), 197-203.