Pacific Journal of Mathematics

The structure of twisted ${\rm SU}(3)$ groups.

Albert Jeu-Liang Sheu

Article information

Source
Pacific J. Math., Volume 151, Number 2 (1991), 307-315.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102637084

Mathematical Reviews number (MathSciNet)
MR1132392

Zentralblatt MATH identifier
0736.22020

Subjects
Primary: 46L87: Noncommutative differential geometry [See also 58B32, 58B34, 58J22]
Secondary: 46L35: Classifications of $C^*$-algebras 46L80: $K$-theory and operator algebras (including cyclic theory) [See also 18F25, 19Kxx, 46M20, 55Rxx, 58J22] 58B30

Citation

Sheu, Albert Jeu-Liang. The structure of twisted ${\rm SU}(3)$ groups. Pacific J. Math. 151 (1991), no. 2, 307--315. https://projecteuclid.org/euclid.pjm/1102637084


Export citation

References

  • [BFFLS] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation theory and quantization, I, II, Ann. Physics, 110 (1978), 61- 110, 111-151.
  • [B] K. Bragiel, The twisted SU(3) group, Irreducible * -representationsof the -algebra C(SU{3)), Letters in Math. Phys., 17 (1989), 37-44.
  • [Co] A. Connes, A survey of foliation and operator algebras,Proc. Symp. Pure Math., Vol. 38, Part I, Amer. Math. Soc, Providence, R.I. (1982), 521-62^
  • [Cu-M] R. E. Curto and P. S. Muhly, C*-algebras of multiplication operators on Bergman spaces,J. Funct. Anal., 64 (1985), 315-329.
  • [D] V. G. Drinfeld, Quantum groups,Proc. I.C.M. Berkeley 1986, Vol. 1, 789- 820, Amer. Math. Soc, Providence, R.I. 1987.
  • [Ho] L. Hrmander, The Weyl calculus of pseudo-differentialoperators, Comm. Pure Appl. Math., 32 (1979), 359-443.
  • [Lu-We] J. H. Lu and A. Weinstein, Poisson Lie groups, dressing transformations and Bruhat decompositions, J. Differential Geom., 31 (1990), 501-526.
  • [M-Re] P. S. Muhly and J. N. Renault, C*-algebraof multivariable Wiener-Hopf operators,Trans. Amer. Math. Soc, 274 (1982), 1-44.
  • [Pe] G. K. Pedersen, C*-algebrasand their Automorphism Groups, Academic Press, New York, 1979.
  • [Po] P. Podles, Quantum spheres, Letters in Math. Phys., 14 (1987), 193-202.
  • [Re] J. Renault, A GroupoidApproach to C*-Algebras,Lecture Notes in Math- ematics, Vol. 793, Springer-Verlag, New York, 1980.
  • [Ril] M. A. Rieffel, Deformation quantization and operator algebras, preprint.
  • [Ri2] M. A. Rieffel, Deformation quantization of Heisenberg manifolds, Comm. Math. Phys., 122 (1989), 531-562.
  • [Ri3] M. A. Rieffel, Lie group convolution algebrasas deformation quantization of linear Poisson structures, Amer. J. Math., 112 (1990), 657-686.
  • [Ro] M. Rosso, Comparaison des groupes SU(2) quantiques de Drinfeld et de Woronowicz, C. R. Acad. Sci. Paris, 304 (1987), 323-326.
  • [S] A. J. L. Sheu, Quantization of the Poisson SU(2) and its Poisson homoge- neous space--the 2-sphere,Comm. Math. Phys., 135 (1991), 217-232.
  • [Va-So] L. L. Vaksman and Ya. S. Soibelman, Function algebra on quantum group SU(2), Funktsional. Anal, i Prilozhen., 22 (1988), No. 2, 1-14 (in Rus- sian).
  • [Vo] A. Voros, An algebra of pseudodifferential operatorsand the asymptotics of quantum mechanics, J. Funct. Anal, 29 (1978), 104-132.
  • [We] A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom., 18 (1983), 523-557.
  • [Wol] S. L. Woronowicz, Twisted SU(2) group: an example of a non-commutative differential calculus, Publ. RIMS, 23 (1987), 117-181.
  • [Wo2] S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys., Ill (1987), 613-665.