Pacific Journal of Mathematics

The Penney-Fujiwara Plancherel formula for abelian symmetric spaces and completely solvable homogeneous spaces.

Ronald L. Lipsman

Article information

Source
Pacific J. Math., Volume 151, Number 2 (1991), 265-295.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102637082

Mathematical Reviews number (MathSciNet)
MR1132390

Zentralblatt MATH identifier
0759.22012

Subjects
Primary: 22E45: Representations of Lie and linear algebraic groups over real fields: analytic methods {For the purely algebraic theory, see 20G05}
Secondary: 22E27: Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.) 43A85: Analysis on homogeneous spaces

Citation

Lipsman, Ronald L. The Penney-Fujiwara Plancherel formula for abelian symmetric spaces and completely solvable homogeneous spaces. Pacific J. Math. 151 (1991), no. 2, 265--295. https://projecteuclid.org/euclid.pjm/1102637082


Export citation

References

  • [I] P. Bernat, et. al., Representations des Groupesde Lie Resolubles, Dunod, Paris, 1972.
  • [2] L. Corwin and F. Greenleaf, Direct integral decompositions and multiplicities for induced representations of nilpotent Lie groups, Trans. Amer. Math. Soc, 304(1987), 579-583.
  • [3] J. Dixmier and P. Malliavin, Factorisations defonctions et de vecteurs indefini- ment differentiates, Bull. Sci. Math., 102 (1978), 305-330.
  • [4] H. Fujiwara, Representations monomiales d'un groupe de Lie nilpotente, Pacific J. Math., 127(1987), 329-352.
  • [5] H. Fujiwara and S. Yamagami, Certaines representations monomiales d'un groupe de Lie resoluble exponentiel, Adv. Stud. Pure Math., 14 (1988), 153- 190.
  • [6] H. Fujiwara, Representations monomiales des groupes de Lie resolublesexpo- nentiels, Proc. Conf. Group Reps., Copenhagen 1988, Progress in Math., 82 (1990), 61-84.
  • [7] R. Goodman, Complex Fourier analysis on nilpotent Lie groups, Trans. Amer. Math. Soc, 160 (1971), 373-391.
  • [8] A. Kleppner and R. Lipsman, The Plancherelformula for group extensions I, Ann. Sci. Ecole Norm. Sup., 5 (1972), 459-516; II,Ann. Sci. Ecole Norm. Sup., 6(1973), 103-132.
  • [9] R. Lipsman, Harmonic analysis on non-semisimple symmetric spaces, Israel J. Math., 54(1986), 335-350.
  • [10] R. Lipsman, Solvability of invariant differential operators with variablecoefficients, Comm. Partial Differential Equations, 10 (1985), 1261-1316.
  • [II] R. Lipsman, Orbitalparametersfor inducedand restricted representations, Trans. Amer. Math. Soc, 313 (1989), 433-473.
  • [12] R. Lipsman, The Penney-Fujiwara Plancherelformula for symmetric spaces,Proc Conf. Group Reps., Copenhagen 1988, Progress in Math., 82 (1990), 135-145.
  • [13] R. Lipsman, Induced representations of completely solvable Lie groups, Ann. Scuola Norm. Sup. Pisa, 17 (1990), 127-164.
  • [14] R. Lipsman, Restricting representations of completely solvable Lie groups, Canad. J. Math., 42(1990), 790-824.
  • [15] G. Mackey, The Theory of Group Representations, University of ChicagoLec- ture Notes, 1955.
  • [16] R. Penney, Abstract Plancherel theorems and a Frobenius reciprocity theorem, J. Funct. Anal., 18 (1975), 177-190.
  • [17] N. Poulsen, On C-vectorsand intertwining bilinear forms for representations of Lie groups,J. Funct. Anal., 9 (1972), 87-120.
  • [18] R. Strichartz, Harmonic analysis on Grassmannian bundles,Trans. Amer. Math. Soc, 296(1986), 387-409.