Pacific Journal of Mathematics

The largest digit in the continued fraction expansion of a rational number.

Douglas Hensley

Article information

Source
Pacific J. Math., Volume 151, Number 2 (1991), 237-255.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102637080

Mathematical Reviews number (MathSciNet)
MR1132388

Zentralblatt MATH identifier
0743.11004

Subjects
Primary: 11A55: Continued fractions {For approximation results, see 11J70} [See also 11K50, 30B70, 40A15]
Secondary: 11K50: Metric theory of continued fractions [See also 11A55, 11J70]

Citation

Hensley, Douglas. The largest digit in the continued fraction expansion of a rational number. Pacific J. Math. 151 (1991), no. 2, 237--255. https://projecteuclid.org/euclid.pjm/1102637080


Export citation

References

  • [I] R. Bumby, Hausdorff dimension of sets arising in number theory, Lecture Notes in Mathematics, 1135 (1-8) New York Number Theory Seminar, Springer NY 1985.
  • [2] T. W. Cusick, Continuants with bounded digits, Mathematika, 24 (1977), 166- 172.
  • [3] T. W. Cusick, Continuants with bounded digits II, Mathematika, 25 (1978), 107-109.
  • [4] J. Galambos, The distribution of the largest coefficient in continued fraction ex- pansions, Quart. J. Math. Oxford Ser. (2), 23 (1972), 147-151.
  • [5] J. Galambos, The largest coefficient in continued fractions and related problems, Dio- phantine approximation and its applications (Proc. Conf. Washington D. C. 1972) 101-109, Academic Press, NY 1973.
  • [6] I. J. Good, The fractional dimension theory of continued fractions, Proc. Cam- bridge Phil. Soc, 37 (1941), 199-228.
  • [7] D. Hensley, A truncated Gauss-Kuzmin law, Trans. Amer. Math. Soc, 306 (1) 1988.
  • [8] D. Hensley, The distribution of badly approximable numbers and continuants with bounded digits, Proc. Int. Conference on Number Theory, Quebec 1987 (371- 385).
  • [9] D. Hensley, The distribution of badly approximable numbers and continuants with bounded digits, II, J. Number Theory, 34 (1990), 293-334.
  • [10] D. Hensley, Continuedfraction Cantor sets, Hausdorff dimension, andfunctional anal- ysis, J. Number Theory, to appear.
  • [II] Aleksandr Ivic, The Riemann Zeta Fucntion, Chapter 1, Wiley, NY 1985.