Pacific Journal of Mathematics

Arens regularity and discrete groups.

Brian Forrest

Article information

Source
Pacific J. Math., Volume 151, Number 2 (1991), 217-227.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102637078

Mathematical Reviews number (MathSciNet)
MR1132386

Zentralblatt MATH identifier
0746.43002

Subjects
Primary: 43A15: $L^p$-spaces and other function spaces on groups, semigroups, etc.
Secondary: 43A30: Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc. 46H05: General theory of topological algebras

Citation

Forrest, Brian. Arens regularity and discrete groups. Pacific J. Math. 151 (1991), no. 2, 217--227. https://projecteuclid.org/euclid.pjm/1102637078


Export citation

References

  • [1] R. Arens, The adjoint of a bilinear operation,Proc. Amer. Math. Soc, 2 (1951), 839-848.
  • [2] G. Arsac, Sur lespace de Banach engendrepar les coefficientsd'une representa- tion unitaire, Publ. Dep. Math. Lyon, 13 (1976), 1-101.
  • [3] P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra,Pacific J. Math., 11 (1961), 847-870.
  • [4] J. Duncan and A. R. Hosseiniun, The second dual of a Banach algebra,Proc. Roy. Soc. Edinburgh, A84 (1979), 309-325.
  • [5] N. Dunford and J. T. Schwartz, Linear operators I, Interscience, New York (1958).
  • [6] C. F. Dunkl and D. E. Ramirez, Weakly almost periodic functions carried by hypercosets, Trans. Amer. Math. Soc, 185 (1972), 427-434.
  • [7] P. Eymard, L'algebre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, 92 (1964), 181-236.
  • [8] B. Forrest, Amenability and bounded approximate identities in ideals in A{G), Illinois J. Math., (1990), 1-25.
  • [9] E. Granirer, On some spaces of linear functionals on the algebras AP(G) for locally compact groups, Colloq. Math., LII (1987), 119-132.
  • [10] E. Granirer, Properties of the set of topological invariant means on Eymard's W*~ algebra VN(G), Indag. Math., 36 (1974), 116-121.
  • [11] E. Granirer, On some properties of the Banach algebras AP(G) for locally compact groups,Proc. Amer. Math. Soc, 95 (1985), 375-381.
  • [12] E. Granirer and M. Leinert, On some topologies which coincide on the unit sphere of the Fourier-Stieltjesalgebra B(G) and the measure algebra M(G), Rocky Mountain J. Math., 11 (1981), 459-472.
  • [13] C. Herz, Harmonic synthesis for subgroups,Ann. Inst. Fourier (Grenoble), 23 (1973), 91-123.
  • [14] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, vol II, Springer-Verlag, Berlin (1970).
  • [15] O. Kegel and B. Wehrfritz, Locally Finite Groups,North-Holland, Amsterdam (1973).
  • [16] A. T. Lau, The second conjugate algebra of the Fourier algebra of a locally compact group, Trans. Amer. Math. Soc, 267 (1981), 53-63.
  • [17] A. T. Lau and J. Wong, Weakly almost periodic elements in Loo(G) of a locally compact group, Proc. Amer. Math. Soc, 107 (1989), 1031-1036.
  • [18] A. Yu. Ol'shanski, An infinite simple Noetherian group without torsion,Math. U.S.S.R.-Izv., 15 (1980), 531-588.
  • [19] A. L. T. Paterson,Amenability, Math. Surveys, vol. 29, Amer. Math. Soc, Prov- idence, R.I., (1988).
  • [20] J. P. Pier, Amenable Locally Compact Groups,Wiley, New York (1984).
  • [21] J. S. Pym and E. O. Oshobi, Banach algebraswhoseduals consist of multipliers, Math Proc Cambridge Phil. Soc, 102 (1987), 481-505.
  • [22] P. F. Renaud, Invariant means on a class of von Neumann algebras, Trans. Amer. Math. Soc, 170 (1972), 495-498.
  • [23] A. Ulger, Arens regularity sometimes implies R.N.P., Pacific J. Math., 143 (1990), 377-399.