Pacific Journal of Mathematics

Borsuk-Ulam theorem, fixed point index and chain approximations for maps with multiplicity.

Gencho Skordev and Fritz von Haeseler

Article information

Source
Pacific J. Math., Volume 153, Number 2 (1992), 369-396.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102635838

Mathematical Reviews number (MathSciNet)
MR1151567

Zentralblatt MATH identifier
0745.54004

Subjects
Primary: 55M20: Fixed points and coincidences [See also 54H25]

Citation

von Haeseler, Fritz; Skordev, Gencho. Borsuk-Ulam theorem, fixed point index and chain approximations for maps with multiplicity. Pacific J. Math. 153 (1992), no. 2, 369--396. https://projecteuclid.org/euclid.pjm/1102635838


Export citation

References

  • [1] E. Begle, The Vietoris mapping theorem for bicompact spaces, Ann.of Math. (2), 51(1950), 534-543.
  • [2] C.Berge, Espaces TopologiquesFonctions Multivoques, Dunod, Paris,1959.
  • [3] Y.Borisovic, E.Gelman,A.Myskis, and V.Obuhovskii, Topological methodsin fixed point theoryfor multivalued mappings, Russian Math. Surveys, 35 (1980), 65-143.
  • [4] R. Brown, The Lefschetz Fixed Point Theorem, Glenview, III, Scott Foresman and Company,1971.
  • [5] G. Conti and J. Pejsachowicz, Fixed point theorem for multi-valued weighted maps, Ann. Mat.Pura Appl. (4), 126 (1980),319-341.
  • [6] S. Darbo, Grado topologico e theoremi di esistenza di punti uniti per trans- formazioni plurivalenti di besele, Rend. Sem. Mat. Univ. Padova, 19 (1950), 371-395.
  • [7] S. Darbo, Theoria de I'omologia in una categoriadie mappe plurivalenti ponderati, Rend. Sem. Math. Univ. Padova,28 (1958), 188-220.
  • [8] A. Dold, Lectures on Algebraic Topology, Springer, Berlin, Heidelberg,New York, 1980.
  • [9] Z. Dzedzej, Fixed point index for a class ofnonacyclic multivalued maps,Dis- sertationes Math., 253 (1985), 1-58.
  • [10] S. Eilenberg and D. Montgomery, Fixed point theorems for multivalued trans- formations, Amer. J. Math., 58 (1946),214-222.
  • [11] G.Founder and D.Violette,A fixed point indexfor compositions of multivalued maps in Banach spaces (to appear).
  • [12] K. Geba and L. Gorniewicz, On the Bourgin-Yang theorem for multivalued maps, I, Bull. Acad. Polon. Sci. Math., 34 (1986),315-322.
  • [13] L. Gorniewicz, A. Granas, and W. Krysewski, Sur la methode de homotopie dans la theorie despoints fixes pour les applications multivoques, C.R.Acad.Sci. Paris Ser. I, 307 (1988), 489-492; 308 (1989),449-452.
  • [14] M. Henriksen and J. Isbell, On the continuity of the real roots of algebraic equa- tions, Proc. Amer. Math. Soc, 4 (1953),431-434.
  • [15] J. Jaworowski, Theorem on antipodesfor multivalued mappings and fixed point theorems, Bull. Acad. Polon. Sci. Math., 4 (1956), 187-192.
  • [16] R. Jerrad, Homology with multiple valuedfunctions, Trans. Amer. Math. Soc, 213 (1975),407-427.
  • [17] M. Krasnoselskii,On the estimation of the number of critical points offunction- als, Uspekhi Mat.Nauk, 7 (1952), 157-164.(Russian)
  • [18] S. Masih, On the fixed point index and the Nielsen fixed point theorem of sym- metric product mappings, Fund. Math., 102 (1972), 143-158.
  • [19] C. Maunder, Algebraic Topology, London, 1970.
  • [20] C. Maxwell, Fixed points of symmetric product mappings, Proc. Amer. Math. Soc, 8(1957), 808-815.
  • [21] J. Pejsachowicz, The homotopy theorem of weighted mappings, Bull. Un. Mat. Ital. B(5), 14 (1977),702-721.
  • [22] B. O'Neill, Induced homology homomorphisms for set valued maps, Pacific J. Math., 7(1957),1179-1184.
  • [23] H. Schirmer, Fixed points, antipodal points and coincidence of n-acyclic valued multifunctions, Contemp. Math., 21 (1983),207-212.
  • [24] H. Schirmer,An index and a Nielsen numberfor n-valued multifunctions, Fund. Math., 124(1984),207-219.
  • [25] H.-W. Siegberg and G. Skordev, Fixed point index and chain approximation, Pacific J. Math., 102 (1982),455-486.
  • [26] G. Skordev,Multiplicity of the fixed point index for multivalued maps,Serdica Bulg. Math. J., 15 (1989), 160--170.
  • [27] E. Spanier, Algebraic Topology, McGraw Hill Company, New York, 1966.
  • [28] L. Smith, Transferand ramified coverings,Math. Proc. CambridgePhilos. Soc, 93(1983), 485-493.
  • [29] N. Steenrod and D. Epstein, Cohomology operations, Ann. of Math. Studies, no. 50, Princeton Univ. Press, 1962.
  • [30] H. Steinlein, Borsuk's antipodal theorem and itsgeneralizations: a survey, Meth. topol. en anal, non lineare, Comp. rend. coll. par A. Granas, Montreal, 1985, 166-235.