Pacific Journal of Mathematics

On the representation of the determinant of Harish-Chandra's $C$-function of ${\rm SL}(n,{\bf R})$.

Shohei Tanaka

Article information

Pacific J. Math., Volume 153, Number 2 (1992), 343-368.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 22E45: Representations of Lie and linear algebraic groups over real fields: analytic methods {For the purely algebraic theory, see 20G05}
Secondary: 22E46: Semisimple Lie groups and their representations


Tanaka, Shohei. On the representation of the determinant of Harish-Chandra's $C$-function of ${\rm SL}(n,{\bf R})$. Pacific J. Math. 153 (1992), no. 2, 343--368.

Export citation


  • [I] A. Borel and N. R.Wallach, Continuous Cohomology,DiscreteSubgroups and Representations of Reductive groups, Princeton Univ. Press, Princeton, N. J., 1980.
  • [2] L. Cohn,Analytic Theory of the Harish-Chandra C-function,Lecture Notesin Math., vol.429, Springer-Verlag, Berlin and New York,1974.
  • [3] L. Cohn,Some theorems on C-functions,Bull. Amer. Math. Soc, 80 (1974), 921- 926.
  • [4] M. Eguchi and S. Tanaka, Theexplicit representation of the determinant of Harish-Chandra's C-function in SL(3,1) and SL(4,1) cases,preprint.
  • [5] Harish-Chandra,Harmonic analysis onreal reductive groups I. The theory of the constant term, J. Funct. Anal., 19 (1975), 104-204.
  • [6] Harish-Chandra, Harmonic analysis on real reductive groups II. Wave packets in the Schwartz space,Invent. Math., 36 (1976), 1-55.
  • [7] Harish-Chandra, Harmonic analysis on real reductivegroups III. The Maass-Selberg rela- tions andthePlancherelformula, Ann. of Math., 104(1976), 117-201.
  • [8] A.W.Knapp,Representation Theory ofSemisimple Groups:An Overview Based on Examples, Princeton Univ. Press, Princeton, N. J., 1986.
  • [9] A. W. Knapp andE. M.Stein, Intertwining operatorsfor semisimple groups, Ann. of Math., 93 (1971), 489-578.
  • [10] A. W. Knapp andE. M.Stein,Intertwining operatorsfor semisimple groupsII,Invent. Math.,60 (1980), 9-84.
  • [II] R.P.Langlands, On theclassificationof irreduciblerepresentationsof real alge- braicgroups,mimeographed notes, Institute for Advanced Study,1973.
  • [12] B. Speh, The unitary dual of GL(3,1) and GL(4, R), Math. Ann., 258 (1981), 113-133.
  • [13] B. Speh and D. A. Vogan, Reducibility of generalized principal seriesrepresen- tations, Acta Math., 145 (1980), 227-299.
  • [14] D. A. Vogan, Representations of Real Reductive Lie Groups, Birkhauser, Boston, 1981.
  • [15] N. R. Wallach, Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, New York, 1973.
  • [16] N. R. Wallach, On Harish-Chandra 'sgeneralized C-functions, Amer. J. Math., 97 (1975), 385-403.
  • [17] G. Warner, Harmonic Analysis on Semi-Simple Lie GroupsI, II, Springer-Verlag, New York, 1972.