Pacific Journal of Mathematics

On certain Iwahori invariants in the unramified principal series.

Mark Reeder

Article information

Source
Pacific J. Math., Volume 153, Number 2 (1992), 313-342.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102635836

Mathematical Reviews number (MathSciNet)
MR1151565

Zentralblatt MATH identifier
0804.22010

Subjects
Primary: 22E50: Representations of Lie and linear algebraic groups over local fields [See also 20G05]

Citation

Reeder, Mark. On certain Iwahori invariants in the unramified principal series. Pacific J. Math. 153 (1992), no. 2, 313--342. https://projecteuclid.org/euclid.pjm/1102635836


Export citation

References

  • [B] A. Borel, Admissible representations of asemisimple p-adicgroup overalocal field with vectors fixed under an Iwahori subgroup, Inv. Math., 35 (1976), 233-259.
  • [C] W. Casselman, The unramified principal series of p-adic groups I, Comp. Math., 40 (1980), 387-406.
  • [G] V. Ginsburg, Deligne-Langlands conjecture and representations of ajfine Hecke algebras, preprint.
  • [Ka] S. Kato, Irreducibility of principal series representationsfor Hecke algebrasof affine type, J. Fac.Sci.,U. of Tokyo, Sec. 1A, 28 (1982), 929-943.
  • [K-L] D. Kazhdan and G. Lusztig, Proof of the Deligne-Langlandsconjecture for Hecke algebras, Invent. Math., 87 (1987), 153-215.
  • [K-Ll] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math., 53 (1979), 165-184.
  • [K] C. D.Keys, On the decomposition of reducible principal series representations of p-adic Chevalleygroups,Pacific J. Math., 101 (1982), 351-388.
  • [L] G. Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc, 2 (1989), 599-635.
  • [M] I. Mller, Integrales d'entrelacement pour ungroupede Chevalleysur uncorps p-adique, in "Non-commutative harmonic analysis, Marseille-Luminy," Springer Verlag, Lecture Notes No.739, Berlin, 1981.
  • [M2] I. Mller,Integrales d'entrelacement pour GLn{k), k p-adique,in AnalyseHar- monique sur lesgroupsdeLie, SpringerVerlag, Lecture Notes No. 497,Berlin, (1975), 277-347.
  • [R] F.Rodier, in Non-commutativeharmonic analysis,Marseille-Luminy, Sprin- ger Verlag, Lecture Notes No.880, Berlin, 1980.
  • [Ro] J. Rogawski, On modules over the Hecke algebra of a p-adic group, Invent. Math., 79(1985), 443-465.
  • [S] A. Silberger, The Knapp-Stein dimension theorem for p-adic groups, Proc. Amer. Math. Soc, 68 (1978), 243-246.
  • [S1] A. Silberger,Introduction to HarmonicAnalysis on Reductive p-adic Groups, Prince- ton Univ. Press, Princeton, N.J.,1979.