Pacific Journal of Mathematics

Lusternik-Schnirelmann invariants in proper homotopy theory.

R. Ayala, E. Domínguez, A. Márquez, and A. Quintero

Article information

Source
Pacific J. Math., Volume 153, Number 2 (1992), 201-215.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102635829

Mathematical Reviews number (MathSciNet)
MR1151558

Zentralblatt MATH identifier
0746.55001

Subjects
Primary: 55P55: Shape theory [See also 54C56, 55Q07]
Secondary: 55M30: Ljusternik-Schnirelman (Lyusternik-Shnirelʹman) category of a space

Citation

Ayala, R.; Domínguez, E.; Márquez, A.; Quintero, A. Lusternik-Schnirelmann invariants in proper homotopy theory. Pacific J. Math. 153 (1992), no. 2, 201--215. https://projecteuclid.org/euclid.pjm/1102635829


Export citation

References

  • [1] V.V.Agaronjan andJ.M. Smirnov, TheLjusternik-SnireVman categoryfor procategories, Soviet Math. Dokl., 20 (1973), 516-518.
  • [2] R. Ayala, E. Domnguez andA. Quintero, A theoreticalframework for proper homotopy theory, Math. Proc. Camb. Philos. Soc,107(1990), 475-482.
  • [3] R. Ayala,Hurewicz Theoremfor homology at oo,preprint.
  • [4] B. J.Ball andR. B. Sher, A theory of proper shapefor locally compact metric spaces,Fund. Math., 86 (1974), 162-194.
  • [5] K.Borsuk, UberdenLusternik-Schnirelmannschen Begriffder Kategorie,Fund. Math., 26 (1936), 123-136. Abstracted:Sur la notion dela catgoriede M.L.Lusternik et Schnirelmann, Comptes Rend. Acad. Sci.Paris, 198 (1934), 1731-1732.
  • [6] M.Clapp andD. Puppe, Invariants ofthe Lusternik-Schnirelmann type and the topologyof critical sets, Trans. Amer. Math. Soc, 298(1986), 603-620.
  • [7] A. Z. Dymov, On the behaviourat infinity of thefundamental group of ahomo- logcally trivial manifold, Math. USSR Izv., 11 (1977), 529-550.
  • [8] D. A. Edwards and H. M.Hastings, Cechand SteenrodHomotopy Theorieswith Applications to Geometric Topology, Lecture Notes 542, Springer, 1976.
  • [9] F.T. Farrell, L. R. Taylor,andJ. B. Wagoner, The Whitehead theorem inproper category, Compositio Math., 27 (1973), 1-23.
  • [10] R. H. Fox, On the Lustemik-Schnirelmann category,Ann. of Math., 42 (1941), 333-370.
  • [11] H. Freudenthal, Uberdie enden topologischer Raume und Gruppen, Math.Zeit., 33 (1931), 692-713.
  • [12] M.H.Freedman, Thetopology of 4-manifolds, J. Differential Geom., 17 (1982), 375-453.
  • [13] L. Glaser, Geometrical Combinatorial Topology.Vol. II,Van Nostrand, 1972.
  • [14] L. J. Hernandez, About the extension problemfor proper maps, Topology Appl., 25 (1987), 51-64.
  • [15] I. M. James, On category in the sense of Lustemik-Schnirelmann, Topology, 17 (1987), 51-64.
  • [16] L. Lusternik and L. Schnirelmann, Mthodes Topologiques dans les problemes variationnels,Hermann, 1934.
  • [17] W. Magnus, A. Karras, and D. Solitar, Combinatorial Group Theory, Wiley, 1966.
  • [18] S. Mardesic and J. Segal, Shape Theory,North-Holland, 1982.
  • [19] W. S. Massey,Homology and Cohomology Theory,M. Dekker, 1978.
  • [20] D.R. McMillan, Some contractibleopen 3-manifolds, Trans. Amer.Math.Soc, 102 (1962), 373-382.
  • [21] L. Siebenmann, On detectingEuclidean Spacehomotopically among topological manifolds, Inv. Math., 6 (1968), 245-261.
  • [22] R. M. Switzer, Algebraic Topology-Homotopyand Homology, Springer, 1975.
  • [23] J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc, 45 (1939), 243-327.
  • [24] J. H. C. Whitehead and M. H. A. Newman, On the group of certain linkage, Quart J. Math., 8 (1937), 14-21.