Pacific Journal of Mathematics

Fuchsian moduli on a Riemann surface---its Poisson structure and Poincaré-Lefschetz duality.

Katsunori Iwasaki

Article information

Source
Pacific J. Math., Volume 155, Number 2 (1992), 319-340.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102635272

Mathematical Reviews number (MathSciNet)
MR1178029

Zentralblatt MATH identifier
0770.32012

Subjects
Primary: 32G34: Moduli and deformations for ordinary differential equations (e.g. Knizhnik-Zamolodchikov equation) [See also 34Mxx]
Secondary: 14D20: Algebraic moduli problems, moduli of vector bundles {For analytic moduli problems, see 32G13} 58F05

Citation

Iwasaki, Katsunori. Fuchsian moduli on a Riemann surface---its Poisson structure and Poincaré-Lefschetz duality. Pacific J. Math. 155 (1992), no. 2, 319--340. https://projecteuclid.org/euclid.pjm/1102635272


Export citation

References

  • [Go] W. M.Goldman, Thesymplectic nature of thefundamental groupsofsurfaces, Adv. in Math., 54 (1984), 200-225.
  • [Gl] R. Gunning, Lecture on Riemann Surfaces, Mathematical Notes, No. 2, Princeton UniversityPress, Princeton, NJ,1966.
  • [G2] R. Gunning,Lectureon Vector Bundles overRiemann Surfaces,Mathematical Notes, No. 6, Princeton UniversityPress, Princeton, NJ,1967.
  • [I] K. Iwasaki, Moduli and deformation for Fuchsian projective connections on a Riemann surface, J. Fac.Sci. Univ. Tokyo Sect. IA, Math., 38 (3) (1991), 431-531.
  • [JMU] M. Jimbo, T. Miwa and K. Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, I,--General theory and -function,Physica,2D (1981), 306-352.
  • [KO] H.Kimura andK. Okamoto, On thepolynomial Hamiltonian structure of the Gamier system, J. Math. Pures et Appl., 63 (1984), 129-146.
  • [LM] P. Liebermann and C.M.Marie, Symplectic Geometry andAnalyticMechan- ics, ReidelPubl., 1987.
  • [O] K. Okamoto, Isomonodromic deformation and Painlev equations, and the Gamier system, J. Fac.Sci. Univ. of Tokyo, Sect IA, Math., 33 (1986), 575- 618.