Pacific Journal of Mathematics

$L^p$-Fourier transforms on nilpotent Lie groups and solvable Lie groups acting on Siegel domains.

Junko Inoue

Article information

Pacific J. Math., Volume 155, Number 2 (1992), 295-318.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 22E25: Nilpotent and solvable Lie groups
Secondary: 22E30: Analysis on real and complex Lie groups [See also 33C80, 43-XX] 32M05: Complex Lie groups, automorphism groups acting on complex spaces [See also 22E10]


Inoue, Junko. $L^p$-Fourier transforms on nilpotent Lie groups and solvable Lie groups acting on Siegel domains. Pacific J. Math. 155 (1992), no. 2, 295--318.

Export citation


  • [1] K. I. Babenko, ^n inequality in the theory of Fourier integrals,Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 531-542; English transl., Amer. Math. Soc. Transl. (2), 44 (1965), 115-128.
  • [2] W. Beckner,Inequalities in Fourier analysis, Ann. of Math., 102 (1975), 159- 182.
  • [3] P. Bernat et al, Representations des Groupes de Lie Resolubles, Dunod, Paris, 1972.
  • [4] L. J. Corwin and F. P. Greenleaf, Representations ofNilpotent Lie groups and Their Applications, CambridgeUniversity Press, 1990.
  • [5] M. Duflo and C. C. Moore, On the regular representation of a nonunimodular locally compact group, J. Funct. Anal., 21 (1976),209-243.
  • [6] M. Duflo et M. Rais, Sur Vanalyseharmonique sur les groupesde Lie resolubles, Ann. Sci. Ecole Norm. Sup.,9 (1976), 107-144.
  • [7] P. Eymard et M. Terp, La transformation de Fourier et son inversesur legroupe des ax +b d'un corpslocal,Lecture Notes in Mathematics, vol. 739,Springer, 1979, pp.207-248.
  • [8] J. J. F. Fournier, Sharpness in Young's inequality for convolution, Pacific J. Math., 72(1977),383-397.
  • [9] J. J. F. Fournier and B. Russo, Abstract interpolation and operator-valued ker- nels, J. London Math. Soc, 16 (1977),283-289.
  • [10] J. Inoue, Monomial representations of certain exponential Lie groups,J. Funct. Anal, 83 (1989), 121-149.
  • [11] S. Kaneyuki, Homogeneous Bounded Domains and Siegel Domains, Lecture Notes in Mathematics, vol. 241, Springer,1971.
  • [12] A. Kleppner and R. L. Lipsman, The Plancherelformula for group extensions, Ann. Sci. Ecole Norm. Sup., (4) 5 (1972), 459-516; II,Ann. Sci. Ecole Norm. Sup., (4)6(1973),103-132.
  • [13] R. A. Kunze, Lp-Fourier transforms on locally compact unimodular groups, Trans. Amer. Math. Soc, 89 (1958),519-540.
  • [14] R. L. Lipsman, Non-abelian Fourier analysis, Bull. Sci. Math., 98 (1974),209- 233.
  • [15] T. Nomura, Harmonic analysis on a nilpotent Lie group and representations of a solvable Lie group on d^ cohomology spaces, Japan. J. Math., 13 (1987), 277-332.
  • [16] I. I. Pyatetskii-Shapiro, Automorphic Functions and the Geometry of Classical Domains, Gordon and Breach, New York, 1969.
  • [17] H. Rossi et M. Vernge, Equations de Cauchy-Riemann tangentielles associees a un domaine de Siegel, Ann. Sci. Ecole. Norm. Sup.,9 (1976),31-80.
  • [18] B. Russo, The norm of the LP-Fourier transform on unimodular groups,Trans. Amer. Math. Soc, 192 (1974),293-305.
  • [19] B. Russo, The norm of the Lp-Fourier transform, II, Canad. J. Math., 28 (1976), 1121-1131.
  • [20] B. Russo, On the Hausdorffoung theorem for integral operators, Pacific J. Math., 68 (1977),241-253.
  • [21] M.Terp, LP-Fouriertransformation on non-unimodularlocally compact groups, preprint.