Pacific Journal of Mathematics

On some properties of exhaustion maps between bounded domains.

Chi-Keung Cheung

Article information

Source
Pacific J. Math., Volume 156, Number 1 (1992), 107-117.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102635132

Mathematical Reviews number (MathSciNet)
MR1182258

Zentralblatt MATH identifier
0773.32014

Subjects
Primary: 32H02: Holomorphic mappings, (holomorphic) embeddings and related questions
Secondary: 32F15

Citation

Cheung, Chi-Keung. On some properties of exhaustion maps between bounded domains. Pacific J. Math. 156 (1992), no. 1, 107--117. https://projecteuclid.org/euclid.pjm/1102635132


Export citation

References

  • [1] H. Alexander, Extremal holomorphic imbeddings between ball and polydisc, Proc. Amer. Math. So, 68 (1978), 200-202.
  • [2] B. L. Fridman,Biholomorphic invariants of a hyperbolicmanifold, Trans. Amer. Math. Soc, 276 (1983), 685-698.
  • [3] J. E. Fornaess and Sibony Nessim, Increasing sequences of complex manifolds, Math. Ann., 255 (1981), 351-360._
  • [4] S. Frankel, Complex geometry of convex domains that cover varieties, Act! Math., 163 (1989), 104-149.
  • [5] S. Frankel, Affine approachto complex geometry, Contemp. Math., 101 (1989), 263- 286.
  • [6] I. Graham and H. Wu, Characterizations of the unit ball Bn in complex eu- clidean space,Math. Z., 189 (1985), 449-456.
  • [7] G. M. Henkin, An analytic polyhedron is not holomorphically equivalent to a strictly pseudoconvex domain, Soviet Math. Dokl., 14 (1973), 1026-1029.
  • [8] K. T. Kim, Complete localization of domains with noncompact automorphism groups, Trans. Amer. Math. Soc, 319 (1990), 139-153.
  • [9] K. T. Kim, Asymptotic behavior of the curvature of the Bergman metric of the thin domains, preprint.
  • [10] S. Pinchuk, Holomorphic inequivalences of some classes of domains in Cn, Math. USSR-Sb., 39 (1981), 61-86.
  • [11] S. Pinchuk, Homogeneous domains with piecewise smooth boundaries, Math. Notes, 32(1983), 849-852.
  • [12] I. Pyatetskii-Shapiro, Automorphic Functions and the Geometry of Classical Do- mains, Gordon and Breach Sci. PubL, New York, London, Paris, 1969.
  • [13] H. Wu, Normal families of holomorphic mappings, Acta Math., 119 (1967), 193-233.