Pacific Journal of Mathematics

Asymptotic behavior of eigenvalues for a class of pseudodifferential operators on ${\bf R}^n$.

Junichi Aramaki

Article information

Source
Pacific J. Math., Volume 156, Number 1 (1992), 19-44.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102635128

Mathematical Reviews number (MathSciNet)
MR1182254

Zentralblatt MATH identifier
0769.35073

Subjects
Primary: 35P20: Asymptotic distribution of eigenvalues and eigenfunctions
Secondary: 35S05: Pseudodifferential operators 47G30: Pseudodifferential operators [See also 35Sxx, 58Jxx] 58G15

Citation

Aramaki, Junichi. Asymptotic behavior of eigenvalues for a class of pseudodifferential operators on ${\bf R}^n$. Pacific J. Math. 156 (1992), no. 1, 19--44. https://projecteuclid.org/euclid.pjm/1102635128


Export citation

References

  • [1] J. Aramaki, Complex powers of a class of pseudodifferential operatorsand their applications,Hokkaido Math. J., 12, No. 2 (1983), 199-225.
  • [2] J. Aramaki, Complex powers of a class of pseudodifferential operators in Rn and the asymptotic behaviorof eigenvalues,Hokkaido Math. J., 16, No. 1 (1987), 1-28.
  • [3] J. Aramaki, On the asymptotic behaviorsof spectrum of quasi-ellipticpseudodifferential operatorson Rn , Tokyo J. Math., 10, No. 2 (1987), 481-505.
  • [4] J. Aramaki, On an extension of the Ikehara Tauberian theorem, Pacific J. Math., 133, No. 1 (1988), 13-30.
  • [5] J. M. Combes, R. Schrader and R. Seiler, Classicalbounds and limits for energy distributions ofhamilton operatorin electromagneticfields,Ann. Phys., Ill, No. 1 (1978), 1-18.
  • [6] R. Helffer, Invariant associes a une classe d'operateurs pseudodifferentiels et application a hypoellipticite,Ann. Inst. Fourier Grenoble, 26 (1976), 55-70.
  • [7] R. Helffer and J. Nourrigat, Construction de parametrixes pour une nouvelle classed'operateurspseudodifferentiels,J. Differential Equations, 32 (1979), 41-
  • [8] R. Helffer and D. Robert, Proprieteasymptotiques du spectred'oprateurs pseu- dodiffrentiels sur Rn, Comm. Partial Differential Equations, 7 (1982), 795- 882.
  • [9] D. Robert, Propriete spectred'operateurspseudodifferentiels,Comm.Partial Dif- ferential Equations, 3 (1978), 755-826.
  • [10] R. T. Seeley, Complex powers of an elliptic operator,Singular integrals,Proc. Symp. Pure Math., Amer. Math. Soc, (1967), 288-307.
  • [11] M. A. Shubin, Pseudodifferential Operatorsand Spectral Theory, Springer Ver- lag, Berlin, Heidelberg, New York, 1987.