## Pacific Journal of Mathematics

- Pacific J. Math.
- Volume 156, Number 2 (1992), 265-285.

### Studying links via closed braids. VI. A nonfiniteness theorem.

Joan S. Birman and William W. Menasco

#### Article information

**Source**

Pacific J. Math., Volume 156, Number 2 (1992), 265-285.

**Dates**

First available in Project Euclid: 8 December 2004

**Permanent link to this document**

https://projecteuclid.org/euclid.pjm/1102634977

**Mathematical Reviews number (MathSciNet)**

MR1186805

**Zentralblatt MATH identifier**

0780.57002

**Subjects**

Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}

Secondary: 20F36: Braid groups; Artin groups

#### Citation

Birman, Joan S.; Menasco, William W. Studying links via closed braids. VI. A nonfiniteness theorem. Pacific J. Math. 156 (1992), no. 2, 265--285. https://projecteuclid.org/euclid.pjm/1102634977

#### See also

- I : Joan S. Birman, William W. Menasco. Studying links via closed braids. I. A finiteness theorem. Pacific Journal of Mathematics volume 154, issue 1, (1992), pp. 17-36.Project Euclid: euclid.pjm/1102635729
- Joan S. Birman, William W. Menasco. Studying links via closed braids. {II}. On a theorem of Bennequin. II [MR 92g:57009] Topology Appl. 40 1991 1 71--82.Mathematical Reviews (MathSciNet): MR92g:57009
- III : Joan S. Birman, William W. Menasco. Studying links via closed braids. III. Classifying links which are closed $3$-braids. Pacific Journal of Mathematics volume 161, issue 1, (1993), pp. 25-113.Project Euclid: euclid.pjm/1102623463
- Joan S. Birman, William W. Menasco. Studying links via closed braids. {IV}. Composite links and split links. IV [MR 92g:57010a] Invent. Math. 102 1990 1 115--139.Mathematical Reviews (MathSciNet): MR92g:57010a
- Joan S. Birman, William W. Menasco. Studying links via closed braids. V. The unlink. V [MR 92g:57010b] Trans. Amer. Math. Soc. 329 1992 2 585--606.Mathematical Reviews (MathSciNet): MR92g:57010b