Pacific Journal of Mathematics

Strong integral summability and the Stone-Čech compactification of the half-line.

Jeff Connor and Mary Anne Swardson

Article information

Source
Pacific J. Math., Volume 157, Number 2 (1993), 201-224.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102634740

Mathematical Reviews number (MathSciNet)
MR1197054

Zentralblatt MATH identifier
0794.40004

Subjects
Primary: 40C10: Integral methods
Secondary: 28A33: Spaces of measures, convergence of measures [See also 46E27, 60Bxx] 40C05: Matrix methods

Citation

Connor, Jeff; Swardson, Mary Anne. Strong integral summability and the Stone-Čech compactification of the half-line. Pacific J. Math. 157 (1993), no. 2, 201--224. https://projecteuclid.org/euclid.pjm/1102634740


Export citation

References

  • [1] R. Atalla, Regular matrices and P-sets in N - N, Proc. Amer. Math. Soc, 35 (2) (1972), 416-422.
  • [2] J. Connor, Two valued measures and summability, Analysis, 10 (1990), 373- 385.
  • [3] J. Connor, R-type summability methods, Cauchy criteria, P-sets and statistical con- vergence, Proc. Amer. Math. Soc, 115 (2) (1992), 319-327.
  • [4] H. Diamond, B. Kuttner, and L. Raphael, Inclusion theorems for the absolute summability of divergent integrals,Canad. Math. Bull., 26 (4) (1983), 389-398.
  • [5] E. K. van Douwen, Remote points, Dissertationes Math., 188.
  • [6] E. K. van Douwen and J. van Mill, Parovicenko's characterization of - implies CH,Proc. Amer. Math. Soc, 72 (1978), 539-541.
  • [7] N. Dunford and J. Schwartz,Linear Operators, Vol. 1, Interscience, New York, 1967.
  • [8] R. Engelking, General Topology, Revised and completededition,eldermann, Berlin, 1989.
  • [9] N. J. Fine and L. Gillman, Extension of continuous functions in N, Bull. Amer. Math. Soc, 66 (1960),376-381.
  • [10] A. R. Freedman and J. J. Sember,Densities and summability, Pacific J. Math., 95 (1981),293-305.
  • [11] L. Gillman and M. Jerison, Rings of Continuous Functions, University Series in Higher Math., Van Nostrand, Princeton, 1960.
  • [12] E. C. Heagy and L. R. Shawyer, On integral Abel-type and logarithmic methods of summability, Canad. Math. Bull., 20 (2) (1977),207-213.
  • [13] E. C. Heagy and L. R. Shawyer, On strong integral summability, Proc. Edinburgh Math. Soc, 21 (1978), 73-78.
  • [14] H.Henriksen, Multiplicative summability methods and the Stone-Cech compact- ification, Math. Z., 71 (1959),427-435.
  • [15] H. Henriksen and J. Isbell, Multiplicative summability methods and theStone- Cech compactification II,Notices of Amer. Math. Soc, 11 (1964), 90-91.
  • [16] K. Knopp, Norlund methods for functions, Math. Z., 63 (1955), 39-52.
  • [17] J. van Mill and C. F. Mills, A topologicalproperty enjoyed by near points but not by largepoints, Topology Appl., 11 (1980), 199-209.
  • [18] J. Rainwater,Regular matrices with nowhere dense support,Proc Amer. Math. Soc, 29(2) (1971), 361.
  • [19] L. A. Raphael, Equisummability of eigenfunction expansions under analyticmul- tipliers,J. Math. Anal. Appl., 115 (1) (1986), 93-104.
  • [20] E. M. Stein and G.Weiss, Introduction to Fourier Analysis on EuclideanSpaces, Princeton University Press, Princeton, 1971.