Pacific Journal of Mathematics

Optimal approximation class for multivariate Bernstein operators.

Z. Ditzian and X. Zhou

Article information

Source
Pacific J. Math., Volume 158, Number 1 (1993), 93-120.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102634611

Mathematical Reviews number (MathSciNet)
MR1200830

Zentralblatt MATH identifier
0786.41022

Subjects
Primary: 41A36: Approximation by positive operators
Secondary: 41A63: Multidimensional problems (should also be assigned at least one other classification number in this section)

Citation

Ditzian, Z.; Zhou, X. Optimal approximation class for multivariate Bernstein operators. Pacific J. Math. 158 (1993), no. 1, 93--120. https://projecteuclid.org/euclid.pjm/1102634611


Export citation

References

  • [1] H.Berens andY. Xu,Bernstein-Durrmeyer polynomials with Jacobi weights. Approximation Theory and Functional Analysis, C. K. Chui ed., Academic Press, 1990, 25-46.
  • [2] H.Berens andY. Xu, K-moduli, moduli of smoothness, and Bernstein polynomials onsimplices, (manuscript).
  • [3] W.Chen andZ.Ditzian, Best polynomial and Durrmeyer approximation in LP{S), Indag. Math. (N.S.), 2 (1991), 437-452.
  • [4] W. Chen, Z. Ditzianand K. Ivanov, Strong converseinequality for the Bernstein- Durrmeyer operator, J.Approx. Theory, (toappear).
  • [5] Z. Ditzian, Aglobal inversetheorem for combinations ofBernstein polynomials, J. Approx. Theory, 26(1979), 277-292.
  • [6] Z. Ditzian, Saturation of approximation of n-dimensional functions, Constructive function theory, Proceedings ofconference held in Varna, Bulgaria, 1981, Sofia, Bulgaria, 1983, pp. 295-300.
  • [7] Z. Ditzian, Inverse theorems for multi-dimensional Bernstein operators, Pacific J. Math., 121 (1986), 293-319.
  • [8] Z. Ditzian,Best polynomial approximation and Bernstein polynomial approximation on asimplex, Indag. Math., 92(1989), 243-256.
  • [9] Z. Ditzian, Multivariate Bernstein and Markov inequalities, J.Approx. Theory,70 (1992), 273-283.
  • [10] Z. Ditzian and K. Ivanov, Strong converse inequality, J. d'Analise Mat., (to appear).
  • [11] Z. Ditzian and V. Tj)tik, Moduli of Smoothness, Springer-Verlag, 1987.
  • [12] Z. Ditzian and X. Zhou, Kantorovich-Bernstein polynomials, Constructive Ap- proximation, 6 (1990), 421-435.
  • [13] R. Q. Jia and Z. C. Wu, Bernstein polynomial on simplices (Chinese), Acta Math. Sinica, 31 (1988), 510-522.
  • [14] P. G. Nevai, Bernstein inequality in Lp,0 < p < 1, J. Approx. Theory, 27 (1979), 239-243.
  • [15] V. Totik, An interpolation theorem and its applications to positive operators, Pacific J. Math., I l l (1984), 447-481.