Pacific Journal of Mathematics

Szegő maps and highest weight representations.

M. G. Davidson and R. J. Stanke

Article information

Source
Pacific J. Math., Volume 158, Number 1 (1993), 67-91.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102634610

Mathematical Reviews number (MathSciNet)
MR1200829

Zentralblatt MATH identifier
0837.22008

Subjects
Primary: 22E45: Representations of Lie and linear algebraic groups over real fields: analytic methods {For the purely algebraic theory, see 20G05}
Secondary: 22E30: Analysis on real and complex Lie groups [See also 33C80, 43-XX]

Citation

Davidson, M. G.; Stanke, R. J. Szegő maps and highest weight representations. Pacific J. Math. 158 (1993), no. 1, 67--91. https://projecteuclid.org/euclid.pjm/1102634610


Export citation

References

  • [I] B. E. Blank, Knapp-Wallach Szeg integrals and generalized principal series representations: the parabolic rank one case, J. Funct. Anal., 60 (1985), 127- 145.
  • [2] M. G. Davidson, T. J. Enright and R. J. Stanke, Differential operators and highest weight representations,Memoirs Amer. Math. Soc, 455 (1991).
  • [3] M. G. Davidson, Covariant differential operators,Math. Ann., 288 (1990), 731-739.
  • [4] M. G. Davidson and R. J. Stanke, Gradient-typedifferential operatorsand uni- tary highest weight representations of SU(p, q), J. Funct. Anal., 81 (1988), 100-125.
  • [5] K. M. Davis, J. E. Gilbert and R. A. Kunze, Harmonic analysis and exceptional representationsof semisimple groups, Proceedings of the Centre for Mathemat- ical Analysis, Australian National University, 16 (1988), 58-78.
  • [6] K. M. Davis, Invariant differential operators in harmonic analysis on real hyperbolic space, Proceedings of the Centre for Mathematical Analysis, Australian Na- tional University, 16 (1988), 79-91.
  • [7] T. J. Enright, R. Howe and N. Wallach, A classificationof unitary highestweight modules, Proceedings of the University of Utah Conference 1982, Birkhauser, Boston (1983), 97-143.
  • [8] J. E. Gilbert, R. A. Kunze and P. A. Tomas, Intertwining kernels and invariant differential operators in representation theory, in Probability Theory and Har- monic Analysis, eds. J. A. Chao and W. Woyczynishi, Marcel Dekker (1985), 91-112.
  • [9] J. E. Gilbert, R. A. Kunze, R. J. Stanton and P. A. Tomas, Higher gradients and representations of Lie groups, in Conference on Harmonic Analysis in Honor of A. Zygmund, Vol. II, Wadsworth, Belmont, CA (1983), 416-436.
  • [10] Harish-Chandra,Representations of semi-simpleLie groups VI, Amer. J. Math., 78 (1956), 564-628.
  • [II] M. Harris and H. P. Jakobsen, Covariant differential operators,in GroupTheo- retical Methods in Physics,Lecture Notes in Physics, Vol. 180, Springer-Verlag, (1983), 16-34.
  • [12] G. P. Hochschild, The Structure of Lie Groups, Holden-Day, San Francisco, 1965.
  • [13] T. Inoue, Unitary representations and kernel functions associated withbound- aries of a bounded symmetric domain, Hiroshima Math. J., 10 (1980), 75-140.
  • [14] M. Ise and M. Takeuchi, Lie Groups I, II, Transl. Math. Monographs, Vol. 85, AMS, Providence, R.I., 1991.
  • [15] A. W. Knapp, Representation Theory of Semisimple Lie Groups: An Overview Based on Examples, Princeton University Press, Princeton, N.J., 1986.
  • [16] A. W. Knapp and N. R. Wallach, Szeg kernels associated with discrete series, Invent. Math., 34 (1976), 163-200.
  • [17] A. W. Knapp and N. R. Wallach, Correction and addition to Szeg kernels associated with discreteseries, Invent. Math., 62 (1980), 341-346.
  • [18] R. A. Kunze, Quotient representations, in Topics in Modern Analysis, Vol. 1, Proceedings of a seminar held in Torino and Milano, Istituto Nazionale Di Alta Mathematica, (1982), 57-80.
  • [19] K. Okamoto, Harmonic analysis on homogeneous vectorbundles, inConference on Harmonic Analysis, Springer-Verlag Lecture Notes in Math.,Vol. 266, Berlin- Heidelberg-New York, 1972.
  • [20] V. S. Varadarajan, Lie Groups, Lie Algebras and Their Representations, Springer-Verlag, Berlin-Heidelberg-New York, 1984.
  • [21] N. Wallach, The asymptotic behaviorofholomorphic representations, Soc.Math. de France, 2e serie, Memoire, 15 (1984), 291-305.