Pacific Journal of Mathematics

Simple group actions on hyperbolic Riemann surfaces of least area.

S. Allen Broughton

Article information

Pacific J. Math., Volume 158, Number 1 (1993), 23-48.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 57M60: Group actions in low dimensions
Secondary: 20F38: Other groups related to topology or analysis 30F10: Compact Riemann surfaces and uniformization [See also 14H15, 32G15]


Broughton, S. Allen. Simple group actions on hyperbolic Riemann surfaces of least area. Pacific J. Math. 158 (1993), no. 1, 23--48.

Export citation


  • [A-G] M. Aschbacher and R. Guralnick, Some applications of the first cohomology group,J. Algebra, 90 (1984), 446-460.
  • [Be] A. F. Beardon, Geometry of Discrete Groups, GraduateTexts inMathematics, Springer Verlag, Berlin and New York.
  • [Brl] A. Broughton, The homology and higher representationsof the automorphism group of a Riemann surface, Trans. Amer. Math. Soc, 300, No. 1 (1987), 153-158.
  • [Br2] A. Broughton, The equisymmetric stratification of the moduli space and the Krull di- mension of mapping class groups,Topology Appl., 37 (1990), 101-113.
  • [Br3] A. Broughton, Classifying finite group actions on surfaces of low genus, J. Pure Appl. Algebra, 69 (1990), 233-270.
  • [C] M. Conder, The symmetric genus of alternating and symmetric groups, J. Combin. Theory Ser. B, 39 (1985), 179-186.
  • [F-K] H. Farkas and I. Kra, Riemann Surfaces, Graduate Texts in Math., No. 71, Springer-Verlag, Berlin and New York (1980).
  • [F-M] J. Fischer and J. McKay, The non-abeliansimplegroupsG,\G\< 1 0 6 -- maximal subgroups,Math. Comp., 32, No. 144 (1978), 1293-1302.
  • [Fr] G.Frobenius, GesammelteAbhandlungen, Vol. 3, Springer-Verlag, Berlin and New York (1968).
  • [G-Sl] H. Glover and D. Sjerve, Representing PSL2(/?) on a surface of least genus, Lnseignement Mathematique,31 (1985), 305-325.
  • [G-S2] H. Glover and D. Sjerve, The genus of PSL2(#), J. Reine Angew. Math., 380 (1987), 59-86.
  • [Gol] D. Gorenstein,Finite Simple Groups,Plenum (1982).
  • [Go2] D. Gorenstein, personal communication.
  • [Grl] L. Greenberg, Maximal Fuchsian groups,Bull. Amer. Math. Soc, 69 (1963), 569-573.
  • [HI] J. Harvey, Cyclic groups of automorphisms of compact Riemann surfaces, Quarterly J. of Math. (Oxford Ser. 2), 17 (1966), 86-97.
  • [H2] J. Harvey, On branch loci in Teichmller space, Trans. Amer. Math. So, 153 (1971), 387-399.
  • [I] I. M. Isaacs, Character Theory of Finite Groups,AcademicPress(1976).
  • [J] G. D. James, The modular characters of the Mathieu groups,J. Algebra, 27 (1973), 57-111.
  • [K] W. Kantor, personal communication.
  • [L-S] M. Liebeck and J. Saxl, Primitive permutation groups containing an element of largeprime order, J. London Math. Soc. (2),31 (1985),237-249.
  • [McK] J. McKay, The non-abelan simple groups G,\G\ < 106--character tables, Comm. Algebra, 7, No. 13 (1979), 1407-1445.
  • [M] C. Maclachlan, belian groups of automorphisms of compact Riemann sur- faces, Proc. London Math. Soc, Ser. 3, 15 (1965),699-712.
  • [Sc] L. Scott, Matrices and cohomology, Ann. of Math., 105 (1977),473-492.
  • [Si] C. Sims, Computational methods in the study of permutation groups,in Com- putational Problems in Abstract Algebra (Proc. Conf. Oxford (1967),J. Leech (ed.)), Pergamon, Oxford (1970), 169-173.
  • [Sin] A. Sinkov, On thegroup defining relations (2,3,7;/?),Ann. Math. (Ser.2), 38 (1937),577-584.
  • [Sy] P. Symonds,Thecohomology representation of an action of Cp on asurface, Trans. Amer. Math. Soc, 306, No. 1 (1988),389-400.
  • [T] T. Tucker, Finite groups acting on surfaces and the genus of a group, J. Corn- bin. Theory Ser. B, 34 (1983),82-98.
  • [W] A. Woldar, Genus actions offinite simple groups,preprint, Villanova Univer- sity.
  • [Z] H. Zieschang,Finite Groups of Mapping Classes of Surfaces, Lecture Notes in Math., No.875, Springer-Verlag, Berlin,New York (1981).