Pacific Journal of Mathematics

The Plancherel formula for homogeneous spaces with polynomial spectrum.

Ronald L. Lipsman

Article information

Source
Pacific J. Math., Volume 159, Number 2 (1993), 351-377.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102634267

Mathematical Reviews number (MathSciNet)
MR1214076

Zentralblatt MATH identifier
0798.22005

Subjects
Primary: 22E45: Representations of Lie and linear algebraic groups over real fields: analytic methods {For the purely algebraic theory, see 20G05}

Citation

Lipsman, Ronald L. The Plancherel formula for homogeneous spaces with polynomial spectrum. Pacific J. Math. 159 (1993), no. 2, 351--377. https://projecteuclid.org/euclid.pjm/1102634267


Export citation

References

  • [1] E. van den Ban, Invariant differential operatorson asemisimple symmetric space and finite multiplicities inaPlancherel formula, Ark. Mat., 25(1987), 175-187.
  • [2] P.Bonnet, Transformation de Fourier desdistributions de type positif sur un groupe deLieunimodulaire, J. Funct. Anal, 55(1984), 220-246.
  • [3] S.Helgason, GroupsandGeometricAnalysis, Academic Press, Orlando, 1984.
  • [4] A.Kleppner and R. Lipsman, ThePlancherelformula forgroupextensions, Ann. Sci. Ecole. Norm. Sup., 5 (1972), 459-516.
  • [5] R.Lipsman, Harmonic analysis on non-semisimple symmetric spaces,Israel J. Math., 54(1986), 335-350.
  • [6] R.Lipsman, The Penney-Fujiwara Plancherelformula for symmetric spaces,The Orbit Method in Representation Theory, Birkhauser, Progress in Math., 82 (1990), 135-145.
  • [7] R.Lipsman,ThePenney-Fujiwara Plancherelformula for abelian symmetric spacesand completely solvablehomogeneous spaces,Pacific J.Math., 151 (1991), 265-295.
  • [8] R.Lipsman, The Penney-FujiwaraPlancherel formula for homogeneous spaces,Pro- ceedings of a Conference onRepresentation Theory in Kawaguchi-Ko, World Scientific Publishing Co., (1992), 120-139.
  • [9] R.Penney, Abstract Plancherel theorems anda Frobenius reciprocity theorem, J. Funct. Anal, 18(1975), 177-190.
  • [10] N. Poulsen, On C-vectors andintertwining bilinear forms forrepresentations of Lie groups,J. Funct. Anal., 9 (1972), 87-120.
  • [11] R.Strichartz,Harmonic analysis on Grassmannian bundles, Trans. Amer. Math. Soc, 296(1986), 387-409.
  • [12] P. Torasso, Laformule dePoisson-Plancherel pour un groupe deTakiff associe a un groupe deLiesemi-simple a centre fini, J. Funct. Anal., 59(1984), 293-334.