Pacific Journal of Mathematics

Differential-difference operators and monodromy representations of Hecke algebras.

Charles F. Dunkl

Article information

Source
Pacific J. Math., Volume 159, Number 2 (1993), 271-298.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102634264

Mathematical Reviews number (MathSciNet)
MR1214073

Zentralblatt MATH identifier
0821.33009

Subjects
Primary: 32G34: Moduli and deformations for ordinary differential equations (e.g. Knizhnik-Zamolodchikov equation) [See also 34Mxx]
Secondary: 32S40: Monodromy; relations with differential equations and D-modules 33C80: Connections with groups and algebras, and related topics 33D80: Connections with quantum groups, Chevalley groups, $p$-adic groups, Hecke algebras, and related topics 39A99: None of the above, but in this section

Citation

Dunkl, Charles F. Differential-difference operators and monodromy representations of Hecke algebras. Pacific J. Math. 159 (1993), no. 2, 271--298. https://projecteuclid.org/euclid.pjm/1102634264


Export citation

References

  • [AS] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions,National Bureau of Standards, 1964.
  • [BG] C. T. Benson and L. C. Grove, Finite Reflection Groups, 2nd ed., GTM99, Springer-Verlag, New York-Berlin-Heidelberg, 1985.
  • [Bo] N. Bourbaki, Groupes et Algebres de Lie, Ch. 4, 5, 6; Masson, Paris, 1981.
  • [Br] E. Brieskorn, Die Fundamentalgruppe des Raumes der regulren Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math., 12 (1971), 57-61.
  • [Chi] I. V. Cherednik, Generalized braid groups and local r-matrix systems, Dokl. Akad. Nauk SSSR, 307 (1989), 27-34 (in English: Soviet Math. Dokl., 40 (1990), 43-48).
  • [Ch2] I. V. Cherednik,A unification of Knizhnik-Zamolodchikov and Dunkl operatorsvia affine Hecke algebras,Invent. Math., 106 (1991), 411-431.
  • [Cu] C. W. Curtis, The Hecke algebraof a finite Coxeter group, Proc. Symp. Pure Math., 47 (1987), 51-60.
  • [CIK] C. W. Curtis, N. Iwahori, and R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with (B, N)-pairs, I.H.E.S. Publ. Math., 40 (1971), 81-116.
  • [De] P. Deligne, Equations Dijferentielles a Pointes Singuliers Reguliers, Lecture Notes in Math.,vol. 163, Springer-Verlag, New York-Berlin-Heidelberg, 1970.
  • [Dul] C. F. Dunkl, Differential-differenceoperators associated to reflectiongroups, Trans. Amer. Math. So,311 (1989), 167-183.
  • [Du2] C. F. Dunkl, Harmonic polynomials and peak sets on reflection groups,Geom.Ded., 32(1989), 157-171.
  • [Du3] C. F. Dunkl, Operators commuting with Coxeter group actions on polynomials, "In- variant Theory andTableaux,"D.Stanton, ed.,pp. 107-117, Springer-Verlag, New York-Berlin-Heidelberg, 1990.
  • [GU] A. Gyoja and K. Uno, On the semisimplicity of Heche algebras,J. Math. Soc. Japan, 41 (1989), 75-79.
  • [Hel] G. J. Heckman, Root systems and hypergeometric functions II, Compositio Math., 64 (1987), 353-373.
  • [He2] G. J. Heckman,Hechealgebrasand hypergeometricfunctions, Invent. Math., 100 (1990), 403-417.
  • [He3] G. J. Heckman, A remark on the Dunkl differential-difference operators, "Harmonic Analysis on Reductive Groups", W. Barker and P. Sally, eds., pp. 181-191, Birkhauser, Boston, 1991.
  • [HO] G.J. Heckman and E. M.Opdam, Root systems and hypergeometric functions I, Compositio Math., 64 (1987), 329-352.
  • [Hi] E. Hille, Ordinary Differential Equations in the Complex Domain, Wiley- Interscience, New York, 1976.
  • [Hu] J. E. Humphreys, Reflection Groupsand Coxeter Groups,Cambridge Univer- sity Press, Cambridge, 1990.
  • [I] N. Iwahori, On the structure of the Heche ring of a Chevalley group over a finite field, J. Fac.Sci. Univ. Tokyo, 10 (1964), 215-236.
  • [KL] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Heche algebras, Invent. Math., 53 (1979), 165-184.
  • [L-D] J. A. Lappo-Danilevsky, Systemes des Equations Differentielles Lineaires, Chelsea Publ. Co.,1953.
  • [M] I. G. Macdonald, The Poincare series of a Coxeter group, Math. Ann., 199 (1972), 161-174.
  • [Mat] A. Matsuo, Integrable connections related to zonal sphericalfunctions, Invent. Math., 110 (1992), 95-121.
  • [Ol] E. M. Opdam, Root systems and hypergeometric functions III, Compositio Math., 67(1988),21-49.
  • [O2] E. M. Opdam, Root systems and hypergeometric functions IV, Compositio Math., 67 (1988), 191-209.
  • [O3] E. M. Opdam, Some applications of hypergeometric shift operators, Invent. Math., 98 (1989), 1-18.
  • [O4] E. M. Opdam,Dunkl operators, Besselfunctions and the discriminant of a finite Coxeter group, Compositio Math., to appear.
  • [V] V. S. Varadarajan, Meromorphic differential equations, Exposition. Math., 9 (1991), 97-188.
  • [Y] H. Yamane, Irreducible projective modules of the Heche algebras of a finite Coxeter group, J. Algebra, 127 (1989), 373-384.