Pacific Journal of Mathematics

The moduli of rational Weierstrass fibrations over $\bold P^1$: singularities.

Pablo Lejarraga

Article information

Source
Pacific J. Math., Volume 160, Number 1 (1993), 91-107.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102624566

Mathematical Reviews number (MathSciNet)
MR1227505

Zentralblatt MATH identifier
0789.14001

Subjects
Primary: 14H10: Families, moduli (algebraic)
Secondary: 14E15: Global theory and resolution of singularities [See also 14B05, 32S20, 32S45]

Citation

Lejarraga, Pablo. The moduli of rational Weierstrass fibrations over $\bold P^1$: singularities. Pacific J. Math. 160 (1993), no. 1, 91--107. https://projecteuclid.org/euclid.pjm/1102624566


Export citation

References

  • [Bo] A. Borel, Linear Algebraic Groups,Benjamin, 1969.
  • [Br] E. Brieskorn, Rationale Singularitten komplexer Flchen, Invent. Math., 4 (1968), 336-358.
  • [Fu] W. Fulton, Hurwitz schemes and irreducibility of moduli of algebraiccurves, Ann. of Math., 90 (1969), 542-575.
  • [H-M] J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves,Invent. Math., 67 (1982), 23-86.
  • [Ho] H. Holman, Quotienten komplexer Rumen, Math. Ann., 142 (1961), 407- 440.
  • [Hu] A. Hurwitz, JberRiemansche Flchen mit gegebenen Verzweigungspunkten, Math. Ann., 39 (1981), 1-61.
  • [Ka] A. Kas, Weierstrass normal forms and invariants of elliptic surfaces, Trans. Amer. Math. Soc,225 (1977), 259-266.
  • [Kau] B.Kaup,quivalenzrelatonenaufallgemeinen komplexen Rumen, Schriften- reihe Math. Institut Univ. Minister, Heft 39 (1968).
  • [Kol] K. Kodaira, On compact analytic surfaces, II Ann. of Math., 77 (1963),^63- 626.
  • [Ko2] K. Kodaira, On compact analytic surfaces,IIIAnn. of Math., 78 (1963), 1-4.
  • [Lei] P. Lejarraga, The moduli of elliptic surfaces,thesis, Brandeis, 1985.
  • [Le2] P. Lejarraga, The moduli of rational Weierstrass fibrations over P1 : stratification, Comm. Algebra, 20 (6), (1992), 1557-1590.
  • [Le3] P. Lejarraga, The moduli of Weierstrass fibrations over P 1 : rationality, to appear in The Rocky Mountain J. Math.
  • [Mi] R. Miranda, The moduli of Weierstrass fibrations over P1, Math. Ann., 255 (1981), 379-394.
  • [GIT] D. Mumford, Geometric Invariant Theory, Springer,1963.
  • [M-S] D. Mumford and K. Suominen, Introduction to the theory of moduli, 5th Nordic Summer School in Mathematics, Oslo, 1970.
  • [Ne] A. Neron, Modeles minimaux de varietes abeliennes sur les corps locaux et globaux, Pub.Math. IHES, 1964.
  • [Pr] D. Prill, Local classificationof quotients of complex manifolds by discontinuous groups,Duke Math. J., 34 (1967),375-386.
  • [Sch] G. Schwartz, Lifting Smooth Homotopies of Orbit Spaces, Publ. Math. IHES, No. 51, (1980),37-135.
  • [Seil] W. K. Seiler,Moduli elliptischer Flchen mit Schnitt, thesis,Universitat Karl- sruhe, 1982.
  • [Sei2] W. K. Seiler, Global moduli for elliptic surfaces with a section, Compositio Math., 62 (1987), 169-185.
  • [Sei3] W. K. Seiler, Global moduli for polarized elliptic surfaces, Compositio Math., 62 (1987), 187-213.
  • [Sei4] W. K. Seiler, Deformations of Weierstrass elliptic surfaces, Math. Ann., 281 (1988), 263-278.
  • [Se] J. P. Serre, Linear Representations of Finite Groups,Springer, 1977.