Pacific Journal of Mathematics

A continuation principle for periodic solutions of forced motion equations on manifolds and applications to bifurcation theory.

Massimo Furi and Maria Patrizia Pera

Article information

Source
Pacific J. Math., Volume 160, Number 2 (1993), 219-244.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102624215

Mathematical Reviews number (MathSciNet)
MR1233353

Zentralblatt MATH identifier
0784.58050

Subjects
Primary: 58F22
Secondary: 34C25: Periodic solutions 58E07: Abstract bifurcation theory 70K40: Forced motions

Citation

Furi, Massimo; Pera, Maria Patrizia. A continuation principle for periodic solutions of forced motion equations on manifolds and applications to bifurcation theory. Pacific J. Math. 160 (1993), no. 2, 219--244. https://projecteuclid.org/euclid.pjm/1102624215


Export citation

References

  • [A] J. C. Alexander, A primer on connectivity, Proc. Conf. on Fixed Point The- ory 1980, ed. E. Fadell and G. Fournier, Lecture Notes in Math., vol. 886, Springer Verlag, Berlin, 1981, 455-483.
  • [BD] V. Benci and M. Degiovanni, Periodicsolutions of dissipative dynamical sys- tems, Proc. Conf. on "Variational Problems", Berestycki, Coron and Ekeland editors, Birkhauser, Basel, New York, 1990.
  • [B] W. Blaschke, Vorlesungenuber Differentialgeometrie I, 3d. ed., Berlin 1929; New York, 1945.
  • [BC] F. Brickell and R. S. Clark, Differentiate Manifolds, Van Nostrand Reinhold Company, London, 1979.
  • [Br] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Com- pany, Glenview, Illinois, 1971.
  • [CMZ] A. Capietto, J. Mawhin and F. Zanolin, A continuation approachtosuperlin- ear periodic boundary value problems, J. Differential Equations, 88 (1990), 347-395.
  • [FP1] M. Furi and M. P. Pera, Co-bifurcatingbranches of solutions for nonlinear eigenvalue problems in Banach spaces, Ann. Mat. Pura Appl., 135 (1983), 119-132.
  • [FP2] M. Furi and M. P. Pera, A continuation principle for forced oscillations on differentiable mani- folds, Pacific J. Math., 121 (1986), 321-338.
  • [FP3] M. Furi and M. P. Pera, On the existence offorced oscillationsfor the sphericalpendulum, Boll. Un. Mat. ItaL, 4-B (1990), 381-390.
  • [FP4] M. Furi and M. P. Pera, A continuation principlefor theforced sphericalpendulum, Fixed Point Theory and Applications, Thera M. A. and Baillon J.-B. Editors, Pitman Research Notes in Math. 252, Longman Scientific & Technical, 1991, 141 -- 154.
  • [FP5] M. Furi and M. P. Pera, Theforced sphericalpendulum does haveforced oscillations, Delay Dif- ferential Equations and Dynamical Systems, S. Busenberg and M. Martelli Editors, Lecture Notes in Math., vol. 1475, Springer Verlag, Berlin, 1991, 176-183.
  • [G] A. Granas, The Leray-Schauder index and the fixed point theoryfor arbitrary ANR's, Bull. Soc. Math, de France, 100 (1972), 209-228.
  • [H] M. W. Hirsh, Differential Topology, Graduate Texts in Math., Vol. 33, Sprin- ger Verlag, Berlin, 1976.
  • [L] S. Lang, Introduction to Differentiable Manifolds, John Wiley & Sons Inc., New York, 1966.
  • [Mar] M. Martelli, Large oscillations offorced nonlinear differential equations, Con- temp. Math., vol. 21, Amer. Math. Soc, Providence, RI, 1983, 151-157.
  • [Maw] J. Mawhin, Equivalence theorems for nonlinear operator equations and coin- cidence degreefor some mappings in locally convex topological vectorspaces, J. Differential Equations, 12 (1972), 610-636.
  • [M] J. W. Milnor, Topology from the Differentiable Viewpoint, Univ. Press of Virginia, Charlottesville, 1965.
  • [N] R. D. Nussbaum, The Fixed Point Index and Some Applications, Sem. Math. Sup., Vol. 94, Universite de Montreal, 1985.
  • [T] A. J. Tromba, The Euler characteristic of vector fields on Banach manifolds and a globalization of Leray-Schauder degree, Adv. in Math., 28 (1978), 148-173.